\(\left\{{}\begin{matrix}\left(m-1\right)x-y=-1\\2mx-y=1\end{matrix}\right.\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2020

- Để phương trình có nghiệm duy nhất :

<=> \(\frac{m-1}{2m}\ne\frac{-1}{-1}\ne1\)

<=> \(m-1\ne2m\)

<=> \(m\ne-1\)

- Ta có : \(\left\{{}\begin{matrix}\left(m-1\right)x-y=-1\\2mx-y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-\frac{y\left(m-1\right)}{m-1}=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2m\left(y-1\right)-y\left(m-1\right)=m-1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2my-2m-my+y-m+1=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{\frac{3m-1}{m+1}-1}{m-1}=\frac{\frac{3m-1-m-1}{m+1}}{m-1}=\frac{\frac{2m-2}{m+1}}{m-1}=\frac{2\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{2}{m+1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)

Ta có : \(\left(\frac{2}{m+1}\right)^2+\left(\frac{3m-1}{m+1}\right)^2< 5\)

=> \(\frac{4+9m^2-6m+1-5m^2-10m-5}{m^2+2m+1}< 0\)

=> \(\frac{4m^2-16m}{m^2+2m+1}< 0\)

=> \(4m\left(m-4\right)< 0\)

=> \(\left\{{}\begin{matrix}m>0\\m< 4\end{matrix}\right.\) or \(\left\{{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)

=> \(0< m< 4\) or \(4< m< 0\left(l\right)\)

Vậy ....

4 tháng 1 2019

mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.

1.

\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)

vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)

Thay vào đẳng thức ta được:

\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)

6 tháng 1 2019

k sao đâu bạn mình cảm ơn ạ

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

23 tháng 6 2020

a, Hệ pt đã cho vô nghiệm khi :

\(\frac{m+1}{1}=\frac{m}{-1}\ne\frac{m+2}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=-\frac{1}{2}\\m\ne0\\m\ne2\end{matrix}\right.\)

\(\Leftrightarrow m=-\frac{1}{2}\)

4 tháng 2 2020

Hệ hai phương trình bậc nhất hai ẩn

22 tháng 3 2020

$a)$: tự làm.

\(b)y=\dfrac{m-1-(m-1)x}{2};x=\dfrac{m-my}{3}\)

\(\dfrac{m-my}{3}+y^2=1\\ \Leftrightarrow m-my+3y^2-3=0\\ \Leftrightarrow 3y^2-my+m-3=0\)

Để phương trình có nghiệm duy nhất thì \(\Delta=0\)

Hay: \(m^2-4.3\left(m-3\right)=0\Leftrightarrow m^2-12m+36=0\Rightarrow m=6\)

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)

=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)

\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)

\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)

=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)

=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)

=>m(5m+4)=18m-9

=>\(5m^2-14m+9=0\)

=>(m-1)(5m-9)=0

=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)

NV
19 tháng 11 2019

Trừ pt trên cho dưới:

\(\left(m-1\right)x=m-1\)

- Với \(m=1\Rightarrow\) hệ có vô số nghiệm (loại)

- Với \(m\ne1\Rightarrow x=\frac{m-1}{m-1}=1\)

\(\Rightarrow y=-m-x=-m-1\)

Để \(y^2=x\)

\(\Leftrightarrow\left(-m-1\right)^2=1\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)