\(\left\{{}\begin{matrix}(m−1)x−my=3m−1\\2x−y=m+5\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.

1.

\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)

vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)

Thay vào đẳng thức ta được:

\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)

6 tháng 1 2019

k sao đâu bạn mình cảm ơn ạ

15 tháng 2 2019

Bài 1:

a, \(\left\{{}\begin{matrix}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3\left(m-1\right)x+\left(m-1\right)^2y=12\left(m-1\right)\left(1\right)\\3\left(m-1\right)x+36y=72\left(2\right)\end{matrix}\right.\)

Lấy (2) trừ (1)\(\Rightarrow\) \(36y-\left(m-1\right)^2y=72-12\left(m-1\right)\)\(\Leftrightarrow-m^2y+2my+35y=-12m+84\Leftrightarrow-y\left(m+5\right)\left(m-7\right)=-12m+84\left(3\right)\)

HPT có nghiệm duy nhất khi PT (3) có nghiệm \(\Leftrightarrow\left(m+5\right)\left(m-7\right)\ne0\)\(\Leftrightarrow m\ne-5,m\ne7\)

Với \(m\ne5,m\ne7\) HPT có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{24}{m+5}\\y=\dfrac{12}{m+5}\end{matrix}\right.\)

Ta có: x + y = -1 \(\Leftrightarrow\dfrac{24}{m+5}+\dfrac{12}{m+5}=-1\Leftrightarrow\dfrac{36}{m+5}=-1\Leftrightarrow m+5=-36\Leftrightarrow m=-41\left(TM\right)\)

b, Câu này bạn tự xử nha chứ mình hem try hard được vì nó quá dài huhu T^T

18 tháng 2 2019

gợi ý cái khocroi

18 tháng 12 2016

\(m=1\)

11 tháng 5 2020

Đáp án

m=1

24 tháng 4 2020

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}mx-x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx-x-m\left(2x-m-5\right)-3m+1=0\\y=2x-m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x-mx+m^2+2m+1=0\\y=2x-m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x\left(m+1\right)+\left(m+1\right)^2=0\\y=2x-m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=m-3\end{matrix}\right.\)

Để hệ PT có nghiệm duy nhất x, y tm x2 + 2y = 0 thì :

⇔ ( m + 1 )2 + 2 ( m - 3 ) = 0

⇔ m2 + 4m - 5 = 0

⇔ ( m - 1 ) ( m + 5 ) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}m-1=0\\m+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=-5\end{matrix}\right.\)

Vậy . . . . . . . . .

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.