\(y=-\frac{1}{3}x\) và \(y=x-4\)

a) CM : M...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-\dfrac{1}{3}x=x-4\\y=x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{4}{3}x=-4\\y=x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b: \(OM=\sqrt{\left(3-0\right)^2+\left(-1\right)^2}=\sqrt{10}\)

26 tháng 1 2020

Bạn nào biết giải thì comment nhanh lên ạ . Ai comment nhanh nhất thì mình sẽ k cho ( nhưng phải hợp lý một chút ạ )

5 tháng 3 2020

Tính độ dài OM dùng định lý Pytago : \(OM^2=3^2+1^2\)

Từ đó tính ra OM. Mình làm sai à?

30 tháng 7 2020

a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

Từ đó suy ra x = 11,y = 17,z = 23

b)

a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)

b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)

Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)

c) Tự làm nhé

21 tháng 3 2017

y=-x/3 y=x-4 M O x y

Giao điểm 2 đồ thị

y=-x/3 và y=x-4

=> -x/3 = x - 4

=> -x = 3x - 12

=> x = 3

Thay x = 3 vào 1 trong 2 hàm số => y = -1

=> M(3,-1) Là giao điểm 2 đồ thị.

OM \(\sqrt{3^2+\left(-1\right)^2}\) = \(\sqrt{10}\)

25 tháng 2 2021
¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿
Bài 1: Tìm x,y, biết rằng: x:y:z=3:4:5 và 5z2 - 3x2-2y2 = 594Bài 2: Cho A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm số nguyên x để A có giá trị lầ số nguyên.Bài 3: Rút gọn biểu thức: a) A= | x-3,5|+|4,1-x| ;\(3,5\le x\le4,1\)b) B= |x+1|+|x-3|Bài 4: Tìm GTLN của biểu thức sau D= \(\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)      E=\(\frac{27-2x}{12-x};x\in Z\)Bài 5: Hai cạnh của một tam giác dài 25cm và 26cm.Tổng...
Đọc tiếp

Bài 1: Tìm x,y, biết rằng: x:y:z=3:4:5 và 5z- 3x2-2y= 594

Bài 2: Cho A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm số nguyên x để A có giá trị lầ số nguyên.

Bài 3: Rút gọn biểu thức: 

a) A= | x-3,5|+|4,1-x| ;\(3,5\le x\le4,1\)

b) B= |x+1|+|x-3|

Bài 4: Tìm GTLN của biểu thức sau 

D= \(\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)      

E=\(\frac{27-2x}{12-x};x\in Z\)

Bài 5: Hai cạnh của một tam giác dài 25cm và 26cm.Tổng độ dài hai đường cao tương ứng là 48,8cm.Tính độ dài mỗi đường cao nói trên.

Bài 6: Cho hàm số y = f(x) = ax có đồ thị qua điểm M(-2;3)

a) Xác định hệ số a

b) Vẽ đồ thị hàm số đã cho

c) Xác định tọa độ của một điểm I biết I thuộc đồ thị hàm số đã cho và có tung độ bằng -6

d) CMR: Với mọi giá trị x1,x2 thỏa mãn x1<x2 thì f(x1)>f(x2)

Bài 7 Cho tam giác ABC có 3 góc nhọn, vẽ ra phía ngoài hai tam giác vuông cân tại A là ABD và ACE.

a)CM tam giác DAC= tam giác BAE

b) CM DC=BE và DC vuông góc với BE

c) Gọi M là trung điểm của BC. Trên AM lấy điểm K sao cho M là trung điểm của AK.CM tam giác ADE = tam ggiasc BAK và AM vuong góc với DE

d) Gọi P và Q theo thứ tự là trung điểm cỷa DB và EC. CM tam giác MPQ là tam giác vuông cân

1
27 tháng 1 2017

Dài thế thế thế