Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
+) Thay tọa độ \(\left( { - 1; - 2} \right)\) vào hàm số \(y = - 2{x^2}\) ta được:
\( - 2 = - 2.{\left( { - 1} \right)^2}\)(Đúng)
=> \(\left( { - 1; - 2} \right)\) thuộc đồ thị hàm số \(y = - 2{x^2}\).
+) Thay tọa độ \(\left( {0;0} \right)\) vào hàm số \(y = - 2{x^2}\) ta được:
\(0 = - {2.0^2}\)(Đúng)
=> \(\left( {0;0} \right)\) thuộc đồ thị hàm số \(y = - 2{x^2}\).
+) Thay tọa độ \(\left( {0;1} \right)\) vào hàm số \(y = - 2{x^2}\) ta được:
\(1 = - {2.0^2} \Leftrightarrow 1 = 0\)(Vô lí)
=> \(\left( {0;1} \right)\) không thuộc đồ thị hàm số \(y = - 2{x^2}\).
+) Thay tọa độ \(\left( {2021;1} \right)\) vào hàm số \(y = - 2{x^2}\) ta được:
\(1 = - {2.2021^2}\)(Vô lí)
=> \(\left( {2021;1} \right)\) không thuộc đồ thị hàm số \(y = - 2{x^2}\).
b)
+) Thay \(x = - 2\) vào hàm số \(y = - 2{x^2}\) ta được:
\(y = - 2.{\left( { - 2} \right)^2} = - 8\)
+) Thay \(x = 3\) vào hàm số \(y = - 2{x^2}\) ta được:
\(y = - {2.3^2} = - 18\)
+) Thay \(x = 10\) vào hàm số \(y = - 2{x^2}\) ta được:
\(y = - 2.{\left( {10} \right)^2} = - 200\)
c) Thay \(y = - 18\) vào hàm số \(y = - 2{x^2}\) ta được:
\( - 18 = - 2{x^2} \Leftrightarrow {x^2} = 9 \Leftrightarrow x = \pm 3\)
Vậy các điểm có tọa độ (3;-18) và (-3;-18) thuộc đồ thị hàm số có tung độ bằng -18.
Gọi công thức của hàm số bậc hai là \(y=ax^2+bx+c\)
Trục đối xứng là x=3 nên \(-\dfrac{b}{2a}=3\)
=>b=-2a
Thay x=0 và y=-16 vào (d), ta được:
\(a\cdot0^2+b\cdot0+c=-16\)
=>c=-16
=>\(y=ax^2+bx-16\)
Thay x=-2 và y=0 vào (d), ta được:
\(a\cdot\left(-2\right)^2+b\left(-2\right)-16=0\)
=>4a-2b-16=0
=>\(4a-2\cdot\left(-2a\right)=16\)
=>8a=16
=>a=2
=>b=-2a=-4
Vậy: Công thức cần tìm là \(y=2x^2-4x-16\)
a) \(x=-1\Rightarrow y=0\\ x=0\Rightarrow y=3\\ x=1\Rightarrow y=4\\ x=2\Rightarrow y=3\\ x=3\Rightarrow y=0\)
Lần lượt là: A(-1;0), B(0;3), I(1;4), C(2;3), D(3;0)
b) Vẽ đồ thị:
c) Điểm cao nhất là điểm I(1;4)
Phương trình trục đối xứng là đường thẳng x=1.
Đồ thị hàm số đó quay bề lõm xuống dưới.
a) Quan sát đồ thị:
điểm \(\left( {1; - 2} \right)\) (tức là có x =1; y=-2) thuộc đồ thị.
điểm \(\left( {2; - 1} \right)\) (tức là có x=2; y=-1) thuộc đồ thị hàm số.
điểm (0;0) không thuộc đồ thị hàm số.
b) Từ điểm trên Ox: \(x = 0\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 0 \right) = - 1\)
Từ điểm trên Ox: \(x = 3\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 3 \right) = 0\)
c) Giao điểm của đồ thị và trục Ox là điểm \(\left( {3;0} \right)\).
a: Khi m=1 thì (P): y=x^2+4x+1+1=x^2+4x+2
Thay y=-1 vào (P), ta được:
x^2+4x+2=-1
=>x^2+4x+3=0
=>(x+1)(x+3)=0
=>x=-1 hoặc x=-3
b: Phươngtrình hoành độ giao điểm là:
x^2+(2m+2)x+m^2+m=0
Δ=(2m+2)^2-4(m^2+m)
=4m^2+8m+4-4m^2-4m=4m+4
Để (P) cắt Ox tại hai điểm phân biệt thì 4m+4>0
=>m>-1
\(\left|x_1-x_2\right|=\sqrt{5}\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
=>(2m+2)^2-4(m^2+m)=5
=>4m^2+8m+4-4m^2-4m=5
=>4m+4=5
=>m=1/4
Thay x=-2 vào \(y=-2x^2\), ta được:
\(y=-2\cdot\left(-2\right)^2=-2\cdot4=-8\)
Vậy: A(-2;-8) là điểm cần tìm
Bạn ghi lại hàm số đi bạn