\(y=f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

13 tháng 4 2017

a)

f(x) giao trục tại hai Điểm có hoành độ x1=-4; x2=-2

g(x) giao trục hoành duy nhất một điểm hoành độ x=m/2

Ôn tập chương IV

b) f(x) >g(x) => điểm m/2 phải trong khoảng (-4,-2)

\(-4< \dfrac{m}{2}< -2\Leftrightarrow-8< m< -4\)

NV
7 tháng 3 2020

Đồ thị hàm số nhận Oy làm trục đối xứng khi nó là hàm chẵn

Dễ dàng nhận ra miền xác định của hàm số là 1 miền đối xứng

Khi x thuộc TXĐ, ta có:

\(f\left(-x\right)=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) (tất nhiên \(m\ne\pm1\))

\(f\left(-x\right)=f\left(x\right)\) \(\forall x\in D\)

\(\Leftrightarrow\frac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) \(\forall x\in D\)

\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}+\left(m^2+m-2\right)\sqrt{2018-x}=0\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\end{matrix}\right.\)

Vậy \(m=-2\)

NV
5 tháng 6 2020

a/ \(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta=\left(3+m\right)^2-8\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m^2-2m+1\le0\end{matrix}\right.\) \(\Rightarrow m=1\)

b/ - Với \(m=-1\Rightarrow-2x+2< 0\Rightarrow x>1\) (ko thỏa mãn)

Với \(m\ne-1\Rightarrow\Delta=\left(m-1\right)^2\ge0\) \(\forall m\)

Để \(f\left(x\right)< 0\) với mọi \(x< -1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\-1< x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\frac{2}{m+1}+\frac{m+3}{m+1}+1>0\\\frac{m+3}{m+1}>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\2m+6< 0\\3m+5< 0\end{matrix}\right.\) \(\Rightarrow m< -3\)

NV
2 tháng 4 2020

\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)

a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Do đó các câu c, f cũng không tồn tại m thỏa mãn

b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m

Kết hợp 3 TH \(\Rightarrow m\ge2\)

NV
2 tháng 4 2020

d/ Tương tự như câu b, nhưng

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m>3\)

Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)

e/

TH1: \(\Delta\le0\Rightarrow2\le m\le3\)

TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)

\(\Rightarrow m\ge2\)

DD
24 tháng 1 2022

\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)

Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì: 

\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)

\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).

NV
25 tháng 10 2020

Câu 2 này đề đúng chứ?

\(y=2m^2x+2x+2m^2-m-4\)

\(\Leftrightarrow m^2\left(2x+2\right)+m.\left(-1\right)+\left(2x-y-4\right)=0\)

Điểm cố định là đồ thị hàm số luôn đi qua thỏa mãn:

\(\left\{{}\begin{matrix}2x+2=0\\-1=0\\2x-y-4=0\end{matrix}\right.\) (không tồn tại x;y thỏa mãn)

Vậy ko tồn tại điểm cố định mà ĐTHS luôn đi qua

NV
25 tháng 10 2020

\(\overrightarrow{BI}=3\overrightarrow{CI}=3\left(\overrightarrow{CB}+\overrightarrow{BI}\right)\Rightarrow\overrightarrow{BI}=\frac{3}{2}\overrightarrow{BC}\)

\(\overrightarrow{AJ}=\frac{2}{3}\overrightarrow{AC}\) ; \(\overrightarrow{AK}=\frac{1}{4}\overrightarrow{AB}\)

Vậy:

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+\frac{3}{2}\overrightarrow{BC}\) (1)

\(\overrightarrow{JK}=\overrightarrow{JA}+\overrightarrow{AK}=-\frac{2}{3}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{AB}=-\frac{2}{3}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\frac{1}{4}\overrightarrow{AB}\)

\(\overrightarrow{JK}=-\frac{5}{12}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{BC}\Rightarrow\frac{12}{5}\overrightarrow{JK}=-\overrightarrow{AB}-\frac{8}{5}\overrightarrow{BC}\) (2)

Cộng vế với vế (1) và (2):

\(\overrightarrow{AI}+\frac{12}{5}\overrightarrow{JK}=-\frac{1}{10}\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{BC}=-10\overrightarrow{AI}-24\overrightarrow{JK}\)