Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2
\(\Delta_1\) có 1 vtcp là \(\left(m^2+1;-m\right)\)
\(\Delta_2\) có 1 vtcp là \(\left(-3;-4m\right)\)
Hai đường thẳng vuông góc khi và chỉ khi tích vô hướng 2 vtcp bằng 0
\(\Leftrightarrow-3\left(m^2+1\right)+4m^2=0\)
\(\Leftrightarrow m^2=3\Rightarrow m=\pm\sqrt{3}\)
sửa lại tí nha: ptts Δ1:\(\left\{{}\begin{matrix}x=8+\left(m+1\right)t\\y=10-t\end{matrix}\right.\)
từ ptts Δ1 ta có VTCP của Δ1 là: (m+1;-1) nên VTPT là (1;m+1)
mặt khác ta thấy điểm (8;10) ϵ Δ1 do đó pttq của Δ1 là:
(x-8) +(m+1)(y-10) = 0 ⇔ x + (m+1)y -10m-18=0
Để Δ1 // Δ2 ⇔\(\left\{{}\begin{matrix}1=m\\m+1=6\\-10m-18\ne-76\end{matrix}\right.\)\(\left\{{}\begin{matrix}m=1\\m=5\\m\ne6.1\end{matrix}\right.\)
vậy không có giá trị m nào thỏa mãn đề bài
a: Δ có vtcp là (2;-1) và đi qua A(1;-3)
=>VTPT là (1;2)
PTTQ là:
1(x-1)+2(y+3)=0
=>x-1+2y+6=0
=>x+2y+5=0
b: Vì d vuông góc Δ nên d: 2x-y+c=0
Tọa độ giao của d1 và d2 là:
x+2y=8 và x-2y=0
=>x=4 và y=2
Thay x=4 và y=2 vào 2x-y+c=0, ta được
c+2*4-2=0
=>c=-2
a: Tọa độ A là:
4x-3y-12=0 và 4x+3y-13=0
=>A(25/8;1/6)
Tọa độ B là:
x=0 và 4x-3y-12=0
=>x=0 và y=-4
Tọa độ C là:
x=0 và 4x+3y-13=0
=>y=13/3
b: A(25/8;1/6); B(0;-4); C(0;13/3)
\(AB=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(-4-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)
\(AC=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(\dfrac{13}{3}-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)
\(BC=\sqrt{0^2+\left(\dfrac{13}{3}+4\right)^2}=\dfrac{25}{3}\)
\(P=\dfrac{1}{2}\left(\dfrac{125}{24}+\dfrac{125}{24}+\dfrac{25}{3}\right)=\dfrac{75}{8}\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{-7}{25}\)
=>sin A=24/25
\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{24}{25}\cdot\dfrac{125}{24}\cdot\dfrac{125}{24}=\dfrac{625}{48}\)
=>r=625/48:75/8=25/18
Pt của d1 dạng tổng quát:
\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)
Pt d2 dạng tổng quát:
\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-5=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{11}{3};\frac{7}{3}\right)\)
b/ d' vuông góc d1 nên nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp
Phương trình tổng quát:
\(1\left(x-\frac{11}{3}\right)+2\left(y-\frac{7}{3}\right)=0\Leftrightarrow3x+6y-25=0\)
Pt tham số: \(\left\{{}\begin{matrix}x=\frac{11}{3}+2t\\y=\frac{7}{3}-t\end{matrix}\right.\)
Đề câu sau thiếu