Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt của d1 dạng tổng quát:
\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)
Pt d2 dạng tổng quát:
\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-5=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{11}{3};\frac{7}{3}\right)\)
b/ d' vuông góc d1 nên nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp
Phương trình tổng quát:
\(1\left(x-\frac{11}{3}\right)+2\left(y-\frac{7}{3}\right)=0\Leftrightarrow3x+6y-25=0\)
Pt tham số: \(\left\{{}\begin{matrix}x=\frac{11}{3}+2t\\y=\frac{7}{3}-t\end{matrix}\right.\)
Đề câu sau thiếu
Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)
Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)
Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)
Do đó nếu đường thẳng d tạo với \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của \(\Delta_1;\Delta_2\)
Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng \(\Delta_1\) một góc \(\frac{\pi}{4}\).
Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :
\(ax+by-a-b=0\)
Do góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên
\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)
Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)
Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)
a: Tọa độ A là:
4x-3y-12=0 và 4x+3y-13=0
=>A(25/8;1/6)
Tọa độ B là:
x=0 và 4x-3y-12=0
=>x=0 và y=-4
Tọa độ C là:
x=0 và 4x+3y-13=0
=>y=13/3
b: A(25/8;1/6); B(0;-4); C(0;13/3)
\(AB=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(-4-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)
\(AC=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(\dfrac{13}{3}-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)
\(BC=\sqrt{0^2+\left(\dfrac{13}{3}+4\right)^2}=\dfrac{25}{3}\)
\(P=\dfrac{1}{2}\left(\dfrac{125}{24}+\dfrac{125}{24}+\dfrac{25}{3}\right)=\dfrac{75}{8}\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{-7}{25}\)
=>sin A=24/25
\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{24}{25}\cdot\dfrac{125}{24}\cdot\dfrac{125}{24}=\dfrac{625}{48}\)
=>r=625/48:75/8=25/18
Gọi \(M\left(x;y\right)\) là điểm thuộc phân giác của 2 đường thẳng
\(\Leftrightarrow d\left(M;\Delta_1\right)=d\left(M;\Delta_2\right)\)
a/ \(\frac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\frac{\left|5x+3y+7\right|}{\sqrt{5^2+3^2}}\)
\(\Leftrightarrow\sqrt{17}\left|2x+4y+7\right|=\sqrt{10}\left|5x+3y+7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{17}x+4\sqrt{17}y+7\sqrt{17}=5\sqrt{10}x+3\sqrt{10}y+7\sqrt{10}\\2\sqrt{17}x+4\sqrt{17}y+7\sqrt{17}=-5\sqrt{10}x-3\sqrt{10}y-7\sqrt{10}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2\sqrt{17}-5\sqrt{10}\right)x+\left(4\sqrt{17}-3\sqrt{10}\right)y+7\sqrt{17}-7\sqrt{10}=0\\\left(2\sqrt{17}+5\sqrt{10}\right)x+\left(4\sqrt{17}+3\sqrt{10}\right)y+7\sqrt{17}+7\sqrt{10}=0\end{matrix}\right.\)
Câu b bạn làm tương tự. Số xấu quá nhìn chẳng muốn làm luôn
hình như bạn nhầm \(\sqrt{5^2+3^2}=\sqrt{34}\) chứ sai lại là \(\sqrt{17}\)
d/Do d qua Q, gọi phương trình d có dạng:
\(a\left(x-2\right)+b\left(y+2\right)=0\Leftrightarrow ax+by-2a+2b=0\) với \(a^2+b^2\ne0\)
d cách C một đoạn bằng 3 nên:
\(d\left(C;d\right)=3\Leftrightarrow\frac{\left|3a+b-2a+2b\right|}{\sqrt{a^2+b^2}}=3\)
\(\Leftrightarrow\left|a+3b\right|=\sqrt{9a^2+9b^2}\)
\(\Leftrightarrow a^2+9b^2+6ab=9a^2+9b^2\)
\(\Leftrightarrow8a^2-6ab=0\Rightarrow\left[{}\begin{matrix}a=0\\4a=3b\end{matrix}\right.\) chọn \(a=3\Rightarrow b=4\)
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}y+2=0\\3x+4y+2=0\end{matrix}\right.\)
c/ Gọi M là trung điểm AB \(\Rightarrow M\left(2;3\right)\)
\(\overrightarrow{AB}=\left(6;2\right)=2\left(3;1\right)\)
Đường thẳng d qua P cách đều AB sẽ có 2 trường hợp xảy ra:
TH1: d qua P và M
\(\overrightarrow{MP}=\left(0;2\right)=2\left(0;1\right)\)
\(\Rightarrow\)Đường thẳng d nhận \(\left(1;0\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)+0\left(y-5\right)=0\Leftrightarrow x-2=0\)
TH2: d qua P và song song AB
\(\Rightarrow\)d nhận \(\left(1;-3\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-3\left(y-5\right)=0\Leftrightarrow x-3y+13=0\)