K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Giả sử \(\frac{a}{b}=\frac{c}{d}\)Suy ra  điều ta cần chứng minh là \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}\)

Theo tính chất của dãy tỉ số bằng nhau :

\(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\\\frac{a}{b}=\frac{3c}{3d}=\frac{a+3c}{b+3d}\end{cases}}< =>\frac{a+3c}{b+3d}=\frac{a+c}{b+d}\)

Vậy ta có điều phải chứng minh

10 tháng 8 2020

Ta có : \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}\)

=> (a + 3c)(b+ d) = (b + 3d)(a + c)

=> ab +ad + 3bc + 3cd = ab + bc + 3ad + 3cd

=> ad + 3bc  = bc + 3ad

=> 3bc - bc = 3ad - ad

=> 2bc = 2ad

=> bc = ad

=> \(\frac{a}{b}=\frac{c}{d}\) (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)

Khi đó:

a) Đề bài sai. Bạn xem lại đề.

b) Cần thêm điều kiện $a\neq \pm b; c\neq \pm d$

Khi đó \(t=\frac{a}{b}=\frac{c}{d}\neq \pm 1\)

\(\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}\)

\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}\)

\(\Rightarrow \frac{a+b}{c+d}=\frac{a-b}{c-d}\) (đpcm)

26 tháng 7 2015

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}==\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

suy ra:

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow a=\frac{1}{3}.3b=b\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow b=\frac{1}{3}.3c=c\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow c=\frac{1}{3}.3d=d\)

=>a=b=c=d

26 tháng 7 2015

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(b+c+d+a\right)}=\frac{1}{3}\)

\(\Rightarrow a=\frac{1}{3}.3b=b\)  (1)

      \(b=\frac{1}{3}.3c=c\)   (2)

      \(c=\frac{1}{3}.3d=d\)   (3)

      \(d=\frac{1}{3}.3a=a\)   (4)

Từ (1), (2), (3), (4) suy ra: a = b = c = d   (đpcm)

18 tháng 7 2017

- viết lại cái đề

* Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)

\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)

từ (1),(2),(3),(4) ta có:

a=b,b=c,c=d,d=a

=> a=b=c=d

24 tháng 8 2020

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\left(\text{đpcm}\right)\)

24 tháng 8 2020

\(\frac{a}{b}=\frac{2a}{2b}\) 

\(\frac{c}{d}=\frac{-3c}{-3d}\) 

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{2a-3c}{2b-3d}\)

25 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

a) => \(\frac{2a+c}{2b+d}=\frac{2kb+kd}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\) (1)

\(\frac{2a-3c}{2b-3d}=\frac{2kb-3kd}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\) (2)

Từ (1) và (2) => \(\frac{2a+c}{2b+d}=\frac{2a-3c}{2b-3d}\)

b) => \(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

18 tháng 7 2015

đặt \(\frac{a}{b}=\frac{c}{d}=k\left(1\right)\)

\(\Rightarrow a=bk\) và c = dk

\(\Rightarrow\)2a + 3c = 2bk - 3dk =k . (2b - 3d)

\(\Rightarrow\)\(\frac{2a+3c}{2b+3d}=k\frac{2b+3d}{2b+3d}=k\)

\(\Rightarrow\)\(\frac{2a+3c}{2b+3d}=k\left(2\right)\)

từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2a+3c}{2b+3d}dpcm\)