Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất DTS bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{-5a}{-5b}=\frac{3c}{3d}=\frac{-5a+3c}{-5b+3d}\)
Vậy....
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{3a^2}{3c^2}=\frac{5b^2}{5d^2}=\frac{2a^2}{2c^2}=\frac{7ab}{7cd}\)
\(=\frac{3a^2+5b^2}{3c^2+5d^2}=\frac{2a^2+7ab}{2c^2+7cd}\) ( tích chất dãy tỉ số bằng nhau )
Đặt \(\frac{a}{b}=\frac{c}{d}=v\)
\(\Rightarrow\hept{\begin{cases}a=vb\\c=vd\end{cases}}\)( 1 )
Thay (1) vào vế trái , ta có :
\(VT=\frac{2vb+5b}{3vb-4b}=\frac{b\left(2v+5\right)}{b\left(3v-4\right)}=\frac{2v+5}{3v-4}\)( *)
Thay (1) vào vế phải ta có :
\(VP=\frac{2vd+5d}{3vd-4d}=\frac{2v+5}{3v-4}\)(**)
Từ ( * ) và (** )
=> ĐPCM
ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{d}{b}=\frac{c}{a}\Rightarrow\frac{c+d}{a+b}\Rightarrow\frac{3c+3d}{3a+3b}=\frac{3c-3d}{3a-3b}\)
\(\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)\(\left(điềuphảichứngminh\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2a+5d}{3c-4d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}-\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4d}{3c-4d}\left(=\frac{a}{c}\right)\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)
Ta có:
a/b=c/d => a/c=b/d=2a/2c=3b/3d
= 2a+3b/2c+3d=2a-3b/2c-3d
=> 2a+3b/2a-3b=2c+3d/2c-3d (ĐPCM)