K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2022

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét ΔABC vuông tại A có sin ACB=AB/BC=1/2

nen góc ACB=30 độ

=>góc ABC=60 độ

b: Ta có: ΔOAD cân tại O

mà OH là đường cao

nên OH là trung trực của AD và OH là phân giác của góc AOD

=>BC là trung trực của AD 

Xét ΔCAD có

CH vừa là đường cao, vừa là trungtuyến

nên ΔCAD cân tại C

=>góc ACD=2*góc ACB=60 độ

=>ΔCAD đều

c: Xét ΔEAO và ΔEDO có

OA=OD

góc AOE=góc DOE

OE chung

Do đó; ΔEAO=ΔEDO

=>góc EAO=90 độ

=>EA là tiếp tuyến của (O)

19 tháng 12 2018

a,△ABO có AB=OB=OA=R
suy ra △ABO đều \(\Rightarrow\) \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
△ABC vuông ở A( BC=2R)
AD Py ta go : AC=\(\sqrt{BC^2-AB^2}=\sqrt{4r^2-r^2}=r\sqrt{3}\)
b,Đường kính vuông góc với dây thì đi qua trung điểm của dây ấy
=> OB\(\perp AD\)=>\(BC\perp AD\)
=> BC là trung trực của AD
Ta có CH vừa là trung tuyến (AH=HD) vừa là đường cao của △ADC
=> tam giác ADC đều
c, Vì BC là đường trung trực của AD
mà E\(\in\)BC => ED=EA
△EDO=△EAO (c.c.c)
=>\(\widehat{ADO}=\widehat{EAO}=90^o\)
=>EA⊥AO tại A thuộc (O)
suy ra EA là tiếp tuyến của (O)
d, Ta có góc EAO= \(90^o\)\(\widehat{BAO}=60^o\)(cmt)
=> góc EAB= \(30^o\)
Xét △EAH có \(\widehat{EAB}=\widehat{HAB}=30^o\)
=> AB là tia phân giác
=>\(\dfrac{BE}{BH}=\dfrac{AE}{AH}\)(1)
Vì AC⊥AB=> AC là phan giác ngoài △EAH
\(\Rightarrow\dfrac{CE}{CH}=\dfrac{AE}{AH}\left(2\right)\)
từ (1) và (2) => \(\dfrac{BE}{BH}=\dfrac{CE}{CH}\Rightarrow BE.CH=BH.CE\)(đpcm)

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc EAH+góc ACB=90 độ

góc EBC+góc ACB=90 độ

=>góc EAH=góc EBC

b: AK cắt EF tại M

AK cắt BC tại N

AH cắt (O) tại K

=>HM//AB và QN//AB

=>HM//QN

24 tháng 10 2021

a, ^BAC = 900 ( điểm thuộc đường tròn nhìn đường kính ) 

Theo Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=\sqrt{4R^2-R^2}=\sqrt{3}R\)

sinB = \(\frac{AC}{BC}=\frac{\sqrt{3}R}{2R}=\frac{\sqrt{3}}{2}\Rightarrow\)^B = 600

Vì ^C ; ^B phụ nhau => ^C = 900 - 600 = 300 

b, Vì AH là đường đường cao với D thuộc AH 

=> AD vuông BC (1) 

Vì AD vuông BC => AH = HD (2) 

Từ (1) ; (2) suy ra BC là đường trung trục AD 

Vì BC là đường trung trực => AC = AD 

=> tam giác ACD cân => ^CAD = ^CDA (3) 

Xét tam giác AHC vuông tại H có ^HAC và ^C phụ nhau 

=> ^HAC = 900 - 300 = 600 (4) 

Từ (3) ; (4) suy ra tam giác ADC đều 

c, ^ABC = 1/2 sđ cung AC ( góc nội tiếp chắn cung AC ) 

^CBD = 1/2 sđ cung CD ( góc nội tiếp chắn cung CD ) 

mà BC là đường trung trực nên AH = HD và BC vuông AD 

=> C là điểm chính giữa cung AD => cung AC = cung CD (5) 

Lại có ^AOC = 1/2 sđ cung AC ( góc ở tâm ) => ^AOC = ^ABC = 1/2 sđ cung AC 

^COD = 1/2 sđ cung CD ( góc ở tâm ) => ^COD = ^CBD = 1/2 sđ cung CD

Lại có (5) suy ra ^AOC = ^COD 

Xét tam giác OAE và tam giác ODE 

OA = OD = R 

OE _ chung 

^AOE = ^EOD ( cmt ) 

Vậy tam giác OAE = tam giác ODE 

=> ^OAE = ^ODE = 900

=> OA vuông AE 

Vậy AE là tiếp tuyến của đường tròn (O) 

d, bạn tính lần lượt EB ; CH ; BH ; EC xong nhân vào là ra nhé 

19 tháng 12 2018

a) Xét tam giác ABO có:AB=AO=BO=R

⇒△ABO đều⇒\(\widehat{ABC}=60^0\)

Góc BAC nội tiếp chắn nửa đường tròn nên bằng 90 độ⇒\(\widehat{ACB}=30^0\)

Ta có: AB=R;BC=2R⇒AC=\(\sqrt{4R^2-R^2}=R.\sqrt{3}\)

b) Xét (O) có: BC là đường kính vuông góc với dây AD⇒BC vuông góc với AD tại trung điểm H của AD⇒BC là trung trực của AD

Xét △ADC có CH vừa là đường cao, vừa là đường trung tuyến⇒△ADC cân tại C

\(\widehat{CAD}=60^0\)

Suy ra △ADC đều

c) Chứng minh tứ giác ACDE là hình thoi⇒DC//AE

Mà OA vuông góc với DC do△ADC đều⇒OA⊥OE⇒AE là tiếp tuyến của (O)

d) Ta có: BE=R;CH=\(\dfrac{3R}{2}\);BH=\(\dfrac{R}{2}\);EC=3R

Vậy EB.CH=\(\dfrac{R.3R}{2}=\dfrac{3R^2}{2}\)

BH.CE=\(\dfrac{3R.R}{2}=\dfrac{3R^2}{2}\)

Vậy \(EB.CH=BH.EC\)

3 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đường thẳng q: Tiếp tuyến của c qua A Đường thẳng q: Tiếp tuyến của c qua A Đoạn thẳng h: Đoạn thẳng [A, E] Đoạn thẳng i: Đoạn thẳng [B, E] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [O, C] Đoạn thẳng l: Đoạn thẳng [O, B] Đoạn thẳng m: Đoạn thẳng [A, B] Đoạn thẳng n: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng a: Đoạn thẳng [B, P] Đoạn thẳng b: Đoạn thẳng [C, Q] Đoạn thẳng d: Đoạn thẳng [P, Q] Đoạn thẳng g_1: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [M, A] Đoạn thẳng k_1: Đoạn thẳng [O, M] O = (-0.28, -0.29) O = (-0.28, -0.29) O = (-0.28, -0.29) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d

a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.

b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.

Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)

Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)

Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)

c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)

Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)

Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)

Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)

Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)

Vậy EP = EQ.

+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)

\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)

Lại có  \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))

Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)

3 tháng 5 2017

d. Ta có BD.AC = AB.CD

Lại có do ABCD là tứ giác nội tiếp nên 

AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme)  \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)

\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)

Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)

Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)

\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)