Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)
=>MB=MC
=>M nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM\(\perp\)BC
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ADC}=\widehat{ABC}\)
Xét ΔACD vuông tại C và ΔAHB vuông tại H có
\(\widehat{ADC}=\widehat{ABH}\)
Do đó: ΔACD đồng dạng với ΔAHB
=>\(\widehat{CAD}=\widehat{HAB}\)
\(\widehat{BAH}+\widehat{HAM}=\widehat{BAM}\)
\(\widehat{CAD}+\widehat{MAD}=\widehat{CAD}\)
mà \(\widehat{BAH}=\widehat{CAD}\) và \(\widehat{BAM}=\widehat{CAD}\)
nên \(\widehat{HAM}=\widehat{MAD}\)
=>\(\widehat{IAM}=\widehat{DAM}\)
=>AM là phân giác của góc IAD
c: Xét (O) có
\(\widehat{IAM}\) là góc nội tiếp chắn cung IM
\(\widehat{DAM}\) là góc nội tiếp chắn cung DM
\(\widehat{IAM}=\widehat{DAM}\)
Do đó: \(sđ\stackrel\frown{IM}=sđ\stackrel\frown{DM}\)
=>IM=DM
=>M nằm trên đường trung trực của DI(3)
OI=OD
=>O nằm trên đường trung trực của DI(4)
Từ (3) và (4) suy ra OM là đường trung trực của DI
=>OM\(\perp\)DI
mà OM\(\perp\)BC
nên DI//BC
a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp
Vì AB,AC là tiếp tuyến \(\Rightarrow\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)
\(\Rightarrow AO\bot BC\)
b) Ta có: \(\angle OME=\angle OBE=90\Rightarrow OMBE\) nội tiếp
\(\Rightarrow\angle OBM=\angle OEM\)
c) Vì \(\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)
\(\Rightarrow H\) là trung điểm BC
Tương tự như câu b \(\Rightarrow\angle OFM=\angle OCM\)
mà \(\angle OBM=\angle OCM\) (\(\Delta OBC\) cân tại O)
\(\Rightarrow\angle OFM=\angle OEM\Rightarrow\Delta OFE\) cân tại O có \(OM\bot FE\)
\(\Rightarrow\) M là trung điểm FE
Xét \(\Delta HFM\) và \(\Delta BEM:\) Ta có: \(\left\{{}\begin{matrix}MH=MB\\MF=ME\\\angle HMF=\angle BME\end{matrix}\right.\)
\(\Rightarrow\Delta HFM=\Delta BEM\left(c-g-c\right)\Rightarrow\angle HFM=\angle BEM\)
\(\Rightarrow HF\parallel BE\Rightarrow HF\parallel AB\) mà H là trung điểm BC
\(\Rightarrow F\) là trung điểm BC
a) AM là đường phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)\(\Rightarrow\widebat{BM}=\widebat{CM}\)
=> M là điểm chính giữa cung BC
=> OM _|_ BC (đpcm)
b) AN là phân giác \(\widehat{CAt}\)
=> \(\widehat{tAN}=\widehat{NAC}\)mà \(\widehat{tAN}=\widehat{NCB}\)(Tứ giác ANCB nội tiếp)
và \(\widehat{NAC}=\widehat{NMC}\)(tứ gics ANCB nội tiếp)
=> \(\widehat{NCB}=\widehat{NMC}\)
Xét tam giác NCD và tam giác NMC có:
\(\widehat{MNC}\)chung
\(\widehat{NCB}=\widehat{NMC}\left(cmt\right)\)
=> Tam giác NCD đồng dạng với tam giác NMC (g.g)
=> \(\widehat{NCM}=\widehat{NDC}\)mà \(\widehat{NDC}=90^o\)và \(\widehat{NCM}=90^o\)
=> NC _|_ CM
Xét tam giác NCM nội tiếp có NC _|_ CM
=> NM là đường kính
=> N,O,M thẳng hàng
c) Tam giác MAN nội tiếp đường kín MN
=> AM _|_ AN => Tam giác KAD vuông tại A
Xét tam giác KAD vuông tại A có AI là đường trung bình
=> AI=ID
=> Tam giác AID cân tại A
=> \(\widehat{IAD}=\widehat{IDA}\)(tính chất tam giác cân) hay \(\widehat{IAB}+\widehat{BAD}=\widehat{IDA}\)
Lại có \(\widehat{DAC}+\widehat{DCA}=\widehat{IDA}\)(tính chất góc ngoài)
\(\Rightarrow\widehat{IAB}+\widehat{BAD}=\widehat{DAC}+\widehat{DCA}\)
mà \(\widehat{BAD}=\widehat{DAC}\)(AD là phân giác) => \(\widehat{IAB}=\widehat{DCA}\)
mà 2 góc này nằm ở vị trí góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung
=> IA là tiếp tuyến của (O)