K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) AM là đường phân giác \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)\(\Rightarrow\widebat{BM}=\widebat{CM}\)

=> M là điểm chính giữa cung BC

=> OM _|_ BC (đpcm)

b) AN là phân giác \(\widehat{CAt}\)

=> \(\widehat{tAN}=\widehat{NAC}\)mà \(\widehat{tAN}=\widehat{NCB}\)(Tứ giác ANCB nội tiếp)

                                    và \(\widehat{NAC}=\widehat{NMC}\)(tứ gics ANCB nội tiếp)

=> \(\widehat{NCB}=\widehat{NMC}\)

Xét tam giác NCD và tam giác NMC có:

\(\widehat{MNC}\)chung

\(\widehat{NCB}=\widehat{NMC}\left(cmt\right)\)

=> Tam giác NCD đồng dạng với tam giác NMC (g.g)

=> \(\widehat{NCM}=\widehat{NDC}\)mà \(\widehat{NDC}=90^o\)và \(\widehat{NCM}=90^o\)

=> NC _|_ CM

Xét tam giác NCM nội tiếp có NC _|_ CM

=> NM là đường kính

=> N,O,M thẳng hàng

c) Tam giác MAN nội tiếp đường kín MN

=> AM _|_ AN => Tam giác KAD vuông tại A

Xét tam giác KAD vuông tại A có AI là đường trung bình

=> AI=ID

=> Tam giác AID cân tại A

=> \(\widehat{IAD}=\widehat{IDA}\)(tính chất tam giác cân) hay \(\widehat{IAB}+\widehat{BAD}=\widehat{IDA}\)

Lại có \(\widehat{DAC}+\widehat{DCA}=\widehat{IDA}\)(tính chất góc ngoài)

\(\Rightarrow\widehat{IAB}+\widehat{BAD}=\widehat{DAC}+\widehat{DCA}\)

mà \(\widehat{BAD}=\widehat{DAC}\)(AD là phân giác) => \(\widehat{IAB}=\widehat{DCA}\)

mà 2 góc này nằm ở vị trí góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung

=> IA là tiếp tuyến của (O) 

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
30 tháng 11 2023

a: Xét (O) có

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)

=>MB=MC

=>M nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ADC}=\widehat{ABC}\)

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

\(\widehat{ADC}=\widehat{ABH}\)

Do đó: ΔACD đồng dạng với ΔAHB

=>\(\widehat{CAD}=\widehat{HAB}\)

\(\widehat{BAH}+\widehat{HAM}=\widehat{BAM}\)

\(\widehat{CAD}+\widehat{MAD}=\widehat{CAD}\)

mà \(\widehat{BAH}=\widehat{CAD}\) và \(\widehat{BAM}=\widehat{CAD}\)

nên \(\widehat{HAM}=\widehat{MAD}\)

=>\(\widehat{IAM}=\widehat{DAM}\)

=>AM là phân giác của góc IAD

c: Xét (O) có

\(\widehat{IAM}\) là góc nội tiếp chắn cung IM

\(\widehat{DAM}\) là góc nội tiếp chắn cung DM

\(\widehat{IAM}=\widehat{DAM}\)

Do đó: \(sđ\stackrel\frown{IM}=sđ\stackrel\frown{DM}\)

=>IM=DM

=>M nằm trên đường trung trực của DI(3)

OI=OD

=>O nằm trên đường trung trực của DI(4)

Từ (3) và (4) suy ra OM là đường trung trực của DI

=>OM\(\perp\)DI

mà OM\(\perp\)BC

nên DI//BC

20 tháng 1 2016

oài 3 bài này khó kinh khủng 

23 tháng 6 2021

a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp

Vì AB,AC là tiếp tuyến \(\Rightarrow\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)

\(\Rightarrow AO\bot BC\)

b) Ta có: \(\angle OME=\angle OBE=90\Rightarrow OMBE\) nội tiếp

\(\Rightarrow\angle OBM=\angle OEM\)

c) Vì  \(\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)

\(\Rightarrow H\) là trung điểm BC

Tương tự như câu b \(\Rightarrow\angle OFM=\angle OCM\)

mà \(\angle OBM=\angle OCM\) (\(\Delta OBC\) cân tại O)

\(\Rightarrow\angle OFM=\angle OEM\Rightarrow\Delta OFE\) cân tại O có \(OM\bot FE\)

\(\Rightarrow\) M là trung điểm FE

Xét \(\Delta HFM\) và \(\Delta BEM:\) Ta có: \(\left\{{}\begin{matrix}MH=MB\\MF=ME\\\angle HMF=\angle BME\end{matrix}\right.\)

\(\Rightarrow\Delta HFM=\Delta BEM\left(c-g-c\right)\Rightarrow\angle HFM=\angle BEM\)

\(\Rightarrow HF\parallel BE\Rightarrow HF\parallel AB\) mà H là trung điểm BC 

\(\Rightarrow F\) là trung điểm BC