Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MN là đường kính \(\left(O;R\right)\)
\(\Rightarrow R=OM=\dfrac{1}{2}MN=\dfrac{1}{2}.6=3\left(cm\right)\)
Vì AB là tiếp tuyến (O;OB)
=> OB vuông AB
hay tam giác ABO vuông tại B
Xét tam giác OBA vuông tại B, đường cao BH
* Áp dụng hệ thức : \(OB^2=OH.OA\Rightarrow OH=\dfrac{OB^2}{OA}=\dfrac{18}{5}\)cm
a) Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OC là đường cao ứng với cạnh đáy AB(OH⊥AB, C∈OH)
nên OC là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
⇒\(\widehat{AOC}=\widehat{BOC}\)
Xét ΔAOC và ΔBOC có
OA=OB(=R)
\(\widehat{AOC}=\widehat{BOC}\)(cmt)
OC chung
Do đó: ΔAOC=ΔBOC(c-g-c)
⇒\(\widehat{OAC}=\widehat{OBC}\)(hai góc tương ứng)
mà \(\widehat{OAC}=90^0\)(CA là tiếp tuyến của (O) có A là tiếp điểm)
nên \(\widehat{OBC}=90^0\)
hay CB⊥OB tại B
Xét (O) có
OB là bán kính
CB⊥OB tại B(cmt)
Do đó: CB là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
b) Xét (O) có
OH là một phần đường kính
AB là dây
OH⊥AB tại H(gt)
Do đó: H là trung điểm của AB(Định lí đường kính vuông góc với dây)
⇒\(BH=\dfrac{AB}{2}=\dfrac{24}{2}=12cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBC vuông tại B có BH là đường cao ứng với cạnh huyền OC, ta được:
\(\dfrac{1}{BH^2}=\dfrac{1}{BC^2}+\dfrac{1}{BO^2}\)
\(\Leftrightarrow\dfrac{1}{12^2}=\dfrac{1}{BC^2}+\dfrac{1}{20^2}\)
\(\Leftrightarrow\dfrac{1}{BC^2}=\dfrac{1}{12^2}-\dfrac{1}{20^2}=\dfrac{1}{144}-\dfrac{1}{400}=\dfrac{1}{225}\)
\(\Leftrightarrow BC^2=225\)
hay BC=15(cm)
Áp dụng định lí Pytago vào ΔOBC vuông tại B, ta được:
\(OC^2=OB^2+BC^2\)
\(\Leftrightarrow OC^2=15^2+20^2=625\)
hay OC=25(cm)
Vậy: OC=25cm
a) Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
\(\widehat{BCD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
Do đó: \(\widehat{BAD}=\widehat{BCD}\)(Hệ quả góc nội tiếp)
hay \(\widehat{IAD}=\widehat{ICB}\)
Xét ΔIAD và ΔICB có
\(\widehat{IAD}=\widehat{ICB}\)(cmt)
\(\widehat{AID}=\widehat{CIB}\)(hai góc đối đỉnh)
Do đó: ΔIAD\(\sim\)ΔICB(g-g)
Suy ra: \(\dfrac{IA}{IC}=\dfrac{ID}{IB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(IA\cdot IB=IC\cdot ID\)(đpcm)
a: Xét (O) có
OH là một phần đường kính
AB là dây
OH\(\perp\)AB
Do đó: H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MA^2=MH\cdot MO\)
b: Xét ΔMAB có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMAB cân tại M
Xét (O) có
ΔCAB nội tiếp
CB là đường kính
Do đó: ΔCAB vuông tại A
Xét tứ giác HAEM có
\(\widehat{HAE}=\widehat{AHM}=\widehat{HME}=90^0\)
Do đó: HAEM là hình chữ nhật
Suy ra: HA=EM và HA//EM
=>HB=EM và HB//EM
=>HBME là hình bình hành
Suy ra: EB đi qua trung điểm của MH
Xét (O) có
OH là một phần đường kính
MN là dây
OH⊥MN tại H
Do đó: H là trung điểm của MN
=>HM=HN=MN/2=3(cm)
Xét ΔOHM vuông tại H có
\(OM^2=OH^2+HM^2\)
hay OH=4cm