K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

a) Ta có AB và AC là tiếp tuyến tại A và B của (O)

=> AB⊥OB và AC⊥OC

Xét ΔAOB và ΔAOC có 

       OB=OC(=R)

Góc ABO=Góc ACO=90

       OA chung

=> ΔAOB=ΔAOC

=> AB=AC

=> A∈trung trực của BC

Có OB=OC(=R)

=>O∈trung trực của BC

=> OA là đường trung trực của BC 

Mà H là trung điểm của BC

=>A;H;O thẳng hàng

Xét ΔABO vuông tại B

=>A;B:O cùng thuộc đường tròn đường kính OA

Xét ΔACO vuông tại C

=>A;C;O cùng thuộc đuường tròn đường kính OA

=>A;B;C;O cùng thuộc đường tròn đường kính OA

b) Xét (O) có BD là đường kính

=>ΔBCD vuông tại C

=> CD⊥BC

Mà OA⊥BC

=>OA//CD

=> Góc AOC=Góc OCD

Xét ΔOCD có OC=OD

=> ΔOCD cân tại O

=> Góc OCD=Góc ODC

=> Góc ODC=Góc AOC

Xét ΔAOC và ΔCDK có 

Góc AOC=Góc CDK

Góc ACO=Góc CKD=90

=>ΔAOC∞ΔCDK

=>AOCDAOCD= ACCKACCK 

=>AC.CD=CK.OA

d) Xét ΔOCK vuông tại K

=> ΔOCK nội tiếp đường tròn đường kính OC

Xét ΔOHC vuông tại H

=> ΔOHC nội tiếp đường tròn đươngf kính OC

=> Tứ giác OKCH nội tiếp đường tròn đường kính OC

=> Góc CHK=Góc COD

Có góc BOA=Góc BCK( cùng phụ góc CBD)

Góc CHI+góc BCK=Góc BOA+ góc BAO

=>Góc CHI=Góc BAO

Mà Góc BAO=Góc CBD( cùng phụ góc ABC)

=> Góc CHI=Góc CBD

=> HI//BD

Xét ΔBCD có HI//BD và H là trung điểm của BC

=> HI là đường trung bình của ΔBCD

=> I là trung điểm của CK

29 tháng 4 2020

hay ghê

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại I

Xét ΔOHA vuông tại H và ΔOIC vuông tại I có

\(\widehat{HOA}\) chung

Do đó: ΔOHA~ΔOIC

=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)

=>\(OH\cdot OC=OA\cdot OI\)

mà \(OA\cdot OI=OM^2=OB^2\)

nên \(OB^2=OH\cdot OC\)

=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

Xét ΔOBC và ΔOHB có

\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

\(\widehat{BOC}\) chung

Do đó: ΔOBC~ΔOHB

=>\(\widehat{OBC}=\widehat{OHB}\)

mà \(\widehat{OHB}=90^0\)

nên \(\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

21 tháng 1 2024

mà OA⋅OI=OM2=OB2

nên OB2=OH⋅OC

đoạn này không hiểu ạ , góc B đã vuông đâu

26 tháng 11 2023

c: Xét (O) có

ΔMKD nội tiếp

MD là đường kính

Do đó: ΔMKD vuông tại K

=>MK\(\perp\)KD tại K

=>MK\(\perp\)AD tại K

Xét ΔMDA vuông tại M có MK là đường cao

nên \(AK\cdot AD=AM^2\left(1\right)\)

Xét ΔAOM vuông tại M có MH là đường cao

nên \(AH\cdot AO=AM^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)

30 tháng 4 2017

Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của (O) tại A lấy điểm M (M khác A). Từ M kẻ cát tuyến MCD (C nằm ở giữa M và D; tia MC nằm giữa MA và MO) và tiếp tuyến thứ hai MI (I là tiếp điểm) với đường tròn (O). Đường thẳng BC và BD cắt đường thẳng OM lần lượt tại E và F. Chứng minh:

  O là trung điểm của EF

a: OH*OA=OB^2=R^2

b: ΔOCD cân tại O

mà OM là trung tuyến

nên OM vuông góc với CD

Xét tứ giác OMBA có

góc OMA=góc OBA=90 độ

nên OMBA là tứ giác nội tiếp

c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có

góc MOA chung

Do đó: ΔOHE đồng dạng với ΔOMA

=>OH/OM=OE/OA

=>OM*OE=OH*OA=R^2=OC^2=OD^2

=>ΔODE vuông tại D

=>DE là tiếp tuyến của (O)

13 tháng 12 2021

a: Xét tứ giác AMON có

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

6 tháng 3 2016

1. Để chứng minh cung DE có số đo không đổi, ta cần chứng minh góc \(\angle BOC\) có số đo không đổi. Thực vậy, theo tính chất hai tiếp tuyến cắt nhau,  OB và OC là phân giác ngoài của tam giác ABC. Ta có

 \(\angle BOC=180^{\circ}-\frac{\angle MBC}{2}-\frac{\angle NCB}{2}=\frac{\angle ABC}{2}+\frac{\angle ACB}{2}=90^{\circ}-\frac{\angle BAC}{2}=90^{\circ}-\frac{a}{2}\) 
Do đó góc \(\angle BOC\) có số đo không đổi. Suy ra cung DE có số đo không đổi. 

2.  Do CD vuông góc với AB nên BC,BD là đường kính của hai đường tròn (O) và (O'). Suy ra
 \(\angle CFB=\angle DEB=90^{\circ}\to\angle CFD=\angle CED=90^{\circ}.\)  Vậy tứ giác CDEF nội tiếp. Do đó \(\angle ECF=\angle EDF\to\angle FAB=\angle ECF=\angle EDF=\angle EDB\)
Vậy AB là phân giác của góc AEF.

3. Đề bài có chút nhầm lẫn, "kẻ \(IH\perp BC\) mới đúng. Do tam giác ABC nhọn và I nằm trong nên các điểm H,K,L nằm trên các cạnh của tam giác. Sử dụng bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2,\) ta suy ra \(AL^2+BL^2\ge\frac{1}{2}\left(AL+BL\right)^2=\frac{1}{2}AB^2.\)  Tương tự ta cũng có \(BH^2+CH^2\ge\frac{1}{2}BC^2,KC^2+KA^2\ge\frac{1}{2}AC^2.\)  Mặt khác theo định lý Pitago

\(AL^2+BH^2+CK^2=\left(IA^2-IL^2\right)+\left(IB^2-IH^2\right)+\left(IC^2-IK^2\right)\)
\(=\left(IA^2-IK^2\right)+\left(IB^2-IL^2\right)+\left(IC^2-IH^2\right)\)
\(=BL^2+CH^2+AK^2.\)

Thành thử \(AL^2+BH^2+CK^2=\frac{\left(AL^2+BL^2\right)+\left(BH^2+CH^2\right)+\left(CK^2+AK^2\right)}{2}\ge\frac{AB^2+BC^2+CA^2}{2}.\)
Dấu bằng xảy ra khi \(AL=BL,BH=CH,CK=AK\Leftrightarrow I\)  là giao điểm ba đường trung trực.