K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ODAE có

góc ODA+góc OEA=180 độ

=>ODAE là tứ giác nội tiếp

b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)

\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)

c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có

góc IDK chung

=>ΔDIK đồng dạng vơi ΔDHE

=>DI/DH=DK/DE

=>DH*DK=DI*DE=2*IE^2

27 tháng 12 2021

a) ta có AO=BO=OC=R=(BC/2)
=> tam giác ABC vuông tại A(t/c đường trung tuyến trg tam giác vuông)
=>AC=\(\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=8\)
Xét tam giác CBD vuông tại B có đường cao BA
=> \(BC^2=AC.CD\)
=> CD=\(\dfrac{BC^2}{AC}=\dfrac{100}{8}=\dfrac{25}{2}=12,5\left(Cm\right)\)
b) câu b bn chưa cho cm cái j hết nhm theo mik chắc là cm DE.DO=AD.CD
Xét tam giác BDO vuông tại B có đường cao BE
=> AB(^2)=DE.DO(1)
Xét tam giác BCD vuông tại B có đường cao AB 
=>AB(^2)=AD.CD(2)
Từ (1) và (2) => DE.DO=AD.CD

a: Xét ΔMOH vuông tại N và ΔNOH vuông tại H có

OM=ON

\(\widehat{MOH}=\widehat{NOH}\)

OH chung

Do đó: ΔMOH=ΔNOH

Suy ra: \(\widehat{MOH}=\widehat{NOH}\)

b: Xét ΔMOQ và ΔNOQ có

OM=ON

\(\widehat{MOQ}=\widehat{NOQ}\)

OQ chung

Do đó: ΔMOQ=ΔNOQ

Suy ra; \(\widehat{OMQ}=\widehat{ONQ}=90^0\)

hay QN là tiếp tuyến của (O)

1 tháng 4 2018

de minh giup cho

1 tháng 4 2018

cau a, thi de roi

có góc FKE a góc nội tiếp chắn nửa đt(O)=>goc FKE=90

tam giác FHS đồng dạng với tam giác PKS vi:

FSH=PSK

EFK=EPH(vì E là điểm chính giữa cung lớn MN=>cũng EN=cũng MEFK là góc nội tiếp EHP là góc có đỉnh ngoài đt(O))(ban tu tinh 2 goc do )

nen PHF=PKF=90=>PHE=90 =>TU GIAC NT(2 GOC DOI 180)

DT(O) CO EH vuong goc voiMN (PHE=90) nen EH la duong trung truc cua MN=>FN=FM=>cung FN=cungFM(may cai nay co trong sach giao khoa do minh ko noi chi tiet)

=>goc NKF=goc MKF(2 goc nt chan 2 cung = nhau)

=> phan giac ....

c,

CO GOC FOM=GOC FON (2 goc o tam chan 2 cung = nhau )=>goc NOM =80

\(l_{MFN}\) =....(dung may cong thuc trong sach giao khoa ay)

dien h OMFN cung dung cong thuc trong sgk tu tim hieu nhe moi nho lau

20 tháng 12 2017

A B O C H D E F K M I J

Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.

Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.

Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.

Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.

Ta có KF // AJ nên áp dụng Ta let ta có:

\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)

Do AB = BJ nên KM = MF.

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)