Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB
Ta chứng minh được E,A,N và M, A, F thẳng hàng
=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định
=> Tâm I của đường tròn ngoại tiếp tam giác BMN nằm trên đường trung trực của đoạn thẳng BA'.
Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.
Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.
Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.
Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.
Ta có KF // AJ nên áp dụng Ta let ta có:
\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)
Do AB = BJ nên KM = MF.
Cho đường tròn (O, R). Từ điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm)
a, CMR OA là đường trung trực của đoạn BC
b, Gọi D là giao điểm của đoạn thẳng OA với (O). Kẻ dây BE của (O) song song với OD, kẻ bán kính OF vuông góc với CD. Chứng minh C, O, E thẳng hàng và EF là tia phân giác của góc CED
c, Vẽ đường tròn (A, AD). Gọi I, J lần lượt là giao điểm của đường thẳng ED và FD với đường tròn (A) (I, J khác D). Chứng minh rằng góc CEF= góc JID.