Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có: IN=IM;AI=IC(gt)
suy ra ANCM là hình bình hành
mà ACvuông với MN tại I suy ra ANCM là hình thoi
b, ta có góc INB+NBI=90°(1)
góc DBC+BCD=90°(2)
mà góc BCD=IAN(ANCM là hình thoi)
và góc IAN=INB(cùng phụ với NBA)
suy ra góc INB=BCD(3)
từ 1,2,3 suy ra góc NBI=DBC
suy ra N,B,D thẳng hàng(đpcm)
c, ta có góc IND=ICD(cmt)
suy ra INCD nội tiếp( hai góc bằng nhau cùng chắn cung ID)(đpcm)
d, ta có góc BDO' +O'DC=90°(1)
mà góc O'DC=O'CD(tam giác DCO' cân tại O')
mà góc NCI=ICD(ANCD là hình thoi)
suy ra góc NCI=O'DC
mà góc NCI=NDI( NCDI nội tiếp)
suy ra góc NDI=O'DC(2)
từ 1,2 suy ra NDI+BDO'=90°
suy ra ID là tiếp tuyến của (O')(đpcm)
a: E đối xứng A qua H
=>H là trung điểm của AE
Ta có: ΔOCD cân tại O
mà OH là đường cao
nên H là trung điểm của CD
Xét tứ giác ACED có
H là trung điểm chung của AE và CD
=>ACED là hình bình hành
Hình bình hành ACED có AE\(\perp\)CD
nên ACED là hình thoi
b: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB
Ta có: AC\(\perp\)CB
DE//AC(ACED là hình thoi)
Do đó: DE\(\perp\)BC tại I
=>ΔEIB vuông tại I
=>I nằm trên đường tròn tâm O', đường kính EB
Ta có: OO'+O'B=OB
=>O'O=OB-O'B=R1-R2
=>(O) và (O') tiếp xúc trong với nhau tại B
c: ΔDIC vuông tại I
mà IH là đường trung tuyến
nên HI=HD
=>ΔHID cân tại H
=>\(\widehat{HID}=\widehat{HDI}=90^0-\widehat{DCB}\)
Ta có: O'E=O'I
=>ΔO'EI cân tại O'
=>\(\widehat{O'IE}=\widehat{O'EI}\)
mà \(\widehat{O'EI}=\widehat{HED}\)(hai góc đối đỉnh)
và \(\widehat{HED}=\widehat{DCB}\)(=90 độ-CDE)
nên \(\widehat{O'IE}=\widehat{DCB}\)
Ta có: \(\widehat{HIO'}=\widehat{HIE}+\widehat{O'IE}\)
\(=90^0-\widehat{DCB}+\widehat{DCB}=90^0\)
=>HI là tiếp tuyến của (O')