Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ECOM có
\(\widehat{OME}\) và \(\widehat{OCE}\) là hai góc đối
\(\widehat{OME}+\widehat{OCE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECOM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.
Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.
Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.
Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.
Ta có KF // AJ nên áp dụng Ta let ta có:
\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)
Do AB = BJ nên KM = MF.
a: Xét (O) có
OH là một phần đường kính
AB là dây
OH\(\perp\)AB
Do đó: H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MA^2=MH\cdot MO\)
b: Xét ΔMAB có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMAB cân tại M
Xét (O) có
ΔCAB nội tiếp
CB là đường kính
Do đó: ΔCAB vuông tại A
Xét tứ giác HAEM có
\(\widehat{HAE}=\widehat{AHM}=\widehat{HME}=90^0\)
Do đó: HAEM là hình chữ nhật
Suy ra: HA=EM và HA//EM
=>HB=EM và HB//EM
=>HBME là hình bình hành
Suy ra: EB đi qua trung điểm của MH