K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

a)Gọi I là trung điểm BC \(\Rightarrow\hept{\begin{cases}OI\perp BC\\BI=CI=\frac{R\sqrt{3}}{2}\end{cases}}\)Ta có\(\sin\widehat{BOI}=\frac{BI}{OB}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\Rightarrow\widehat{BOI}=60^o\) \(\Rightarrow\widehat{BOC}=120^o\)

b) Ta có \(\widebat{BC}=\widehat{BOC}=120^o\) Mà\(\Rightarrow\widehat{BAC}=\frac{\widebat{BC}}{2}\)\(\Rightarrow\widehat{BAC}=60^o\)

24 tháng 10 2021

Ta có : d(O;AB) = OH 

=> OH vuông AB tại H (1) 

Theo định lí Pytago tam giác AHO vuông tại H

\(AH=\sqrt{AO^2-HO^2}=8\)cm 

Từ (1) => H là trung điểm AB 

=> AB = 2AH = 2 . 8 = 16 cm 

10 tháng 1 2022

Mình sẽ không vẽ hình vì sợ duyệt.

Vì (O) có bán kính 10cm nên \(OA=10cm\)

Gọi OH là khoảng cách từ O đến AB, khi đó theo quan hệ vuông góc giữa đường kính và dây, ta có H là trung điểm AB, từ đó \(AB=2AH\)

Đồng thời, \(OH=8cm\)

\(\Delta OAH\)vuông tại H \(\Rightarrow AH=\sqrt{OA^2-OH^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)

\(\Rightarrow AB=2AH=2.6=12\left(cm\right)\)

\(\Rightarrow\)Chọn A