Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a).
Vì hai đường thẳng AB và DC song song với nhau nên => góc BDC = góc ADB
Xét 2 tam giác AHB và tam giác BCD ta có: Góc AHB = Góc BCD (gt); Góc BDC = Góc ADB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.
b)
Xét 2 tam giác ADH và ADB ta có: Góc D chung; Góc AHD = Góc DAB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.
=> AD/DH = DB/AD <=> AD^2 = DH x AD
c) và d) không biết làm, bạn thông cảm.
Chúc học tốt.
A B O C D x y M N H G Q Q' K
A, tam giác AOC vuông tại A
=> góc ACO + góc COA = 90 (đl) (1)
có góc COA + góc COD + góc DOB = 180
có góc COD = 90 (gt)
=> góc COA + góc DOB = 90 ; (1)
=> góc ACO = góc DOB
xét tam giác ACO và tam giác BOD có : góc CAO = góc OBD = 90 (gt)
=> tam giác ACO ~ tam giác BOD (g-g)
=> AC/BO = AO/BD
=> AO.BO = AC.BD
Có O là trung điểm của AB (gt) => AO = OB = 1/2AB
=> 1/2.AB.1/2.AB = AC.BD
=> 1/4AB^2 = AC.BD
=> AB^2 = 4AC.BD
b, tam giác CAO ~ tam giác OBD (Câu a)
=> AC/OB = OC/OD
OA = OB (Câu a)
=> AC/OA = OC/OD
=> AC/OC = OA/OD
=> tam giác ACOO ~ tam giác OCD
=> góc ACO = góc OCD
mà CO nằm giữa CA và CD
=> CO là phân giác của góc ACD (đn)
tự chứng minh AC = CM
c, xét tam giác AMB có : MO là đường trung tuyến (O là trung điểm của AB)
MO = AB/2 (OM = OA do tam giác AOC = tam giác MOC(câu b) và OA = AB/2)
=> tam giác AMB vuông tại M (định lí đảo)
=> AM _|_ NB (1)
xét tam giác ACM có : AC = CM (Câu b)
=> tam giác ACM cân tại C (đn) MÀ có CO là phân giác
=> CO là đường cao của tam giác ACM (đl)
=> CO _|_AM (2)
(1)(2) => CO // BN (tc)
xét tam giác BAN có : O là trung điểm của AB (gt)
=> C là trung điểm của AN (tc)
d, gọi BC cắt MH tại Q
có MH // AN do cùng _|_ BA
xét tam giác BCN và tam giác BCA
=> QM/CN = BQ/BC và QH/CA = BQ/BC (hệ quả)
có CN=CA (câu c)
=> MQ = QH ; Q nằm giữa H và M
=> Q là trung điểm của HM (đn)
kẻ AM cắt BD tại G; Kẻ OK _|_ AB (K nằm cùng 1 nửa mp bờ AB chứa Ax, By)
dài chẳng làm nữa
a) Xét \(\Delta HAD\) và \(\Delta ABD\) có:
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\widehat{BDA}\) chung
suy ra: \(\Delta HAD~\Delta ABD\)
b) Áp dụng định lý Pytago ta có:
\(BD^2=AD^2+AB^2\)
\(\Leftrightarrow\)\(BD^2=15^2+20^2=625\)
\(\Leftrightarrow\)\(BD=\sqrt{625}=25\)cm
\(\Delta HAD~\Delta ABD\) \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AD}{BD}\) \(\Rightarrow\) \(AH=\frac{AB.AD}{BD}\)
hay \(AH=\frac{20.15}{25}=12\)
P/s: tính AH áp dụng ngay hệ thức lượng cx đc
Lời giải:
a)
Xét tam giác $AMC$ và $BDM$ có:
\(\left\{\begin{matrix} \widehat{CAM}=\widehat{MBD}=90^0\\ \widehat{AMC}=\widehat{BDM}(=90^0-\widehat{DMB})\\ \end{matrix}\right.\Rightarrow \triangle AMC\sim \triangle BDM(g.g)\)
b) Từ kết quả tam giác đồng dạng phần a suy ra \(\frac{AM}{BD}=\frac{AC}{BM}\)
\(\Rightarrow BD=\frac{AM.BM}{AC}=\frac{6.6}{4}=9\) (cm)
c) Kéo dài $DM$ cắt $Ax$ tại $K$
Xét tam giác $AMK$ và $BMD$ có:
\(\left\{\begin{matrix} AM=BM\\ \widehat{MAK}=\widehat{MBD}=90^0\\ \widehat{AMK}=\widehat{BMD}(\text{đối đỉnh})\end{matrix}\right.\Rightarrow \triangle AMK=\triangle BMD(g.c.g)\)
\(\Rightarrow MK=MD\)
Xét tam giác $CMK$ và $CMD$ có:
\(\left\{\begin{matrix} \text{CM chung}\\ \widehat{CMK}=\widehat{CMD}=90^0\\ KM=DM\end{matrix}\right.\Rightarrow \triangle CMK=\triangle CMD(c.g.c)\)
\(\Rightarrow \widehat{MCK}=\widehat{MCD}\) hay $CM$ là phân giác góc $ACD$
d) \(CM\cap AH=T, DM\cap BH=S\)
Xét tam giác $CAM$ và $CHM$ có:
\(\left\{\begin{matrix} \widehat{CAM}=\widehat{CHM}=90^0\\ \widehat{ACM}=\widehat{HCM}(cmt)\end{matrix}\right.\Rightarrow \triangle CAM\sim \triangle CHM(g.g)\)
\(\Rightarrow \frac{CA}{CH}=\frac{MA}{MH}=\frac{CM}{CM}=1\Rightarrow CA=CH; MA=MH\)
Do đó $CM$ là trung trực của $AH$
\(\Rightarrow CM\perp AH\Rightarrow \widehat{HTM}=90^0\)
Hoàn toàn tương tự: \(DM\perp BH\Rightarrow \widehat{HSM}=90^0\)
Do tứ giác $HTMS$ có 3 góc vuông nên là hình chữ nhật. Do đó \(\widehat{THS}=90^0\Leftrightarrow \widehat{AHB}=90^0\)