K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2020

a).

Vì hai đường thẳng AB và  DC song song với nhau nên => góc BDC = góc ADB

Xét 2 tam giác AHB và tam giác BCD ta có: Góc AHB = Góc BCD (gt); Góc BDC = Góc ADB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.

b)

Xét 2 tam giác ADH và ADB ta có: Góc D chung; Góc AHD = Góc DAB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.

=> AD/DH = DB/AD <=> AD^2 = DH x AD

c) và d) không biết làm, bạn thông cảm. 

Chúc học tốt.

6 tháng 5 2021

a) Ta có :

AD = BC = 6 cm

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :

1/AD^2 + 1/AB^2 = 1/AH^2

<=> 1/6^2 + 1/8^2 = 1/AH^2

<=> AH = 4,8(cm)

b)

Áp dụng Pitago trong tam giác BCD vuông tại C có :

BC^2 + CD^2 = BD^2

<=> 6^2 + 8^2 = DB^2

<=> BD = 10(cm)

Xét hai tam giác vuông AHB và BCD có :

AH/BC = 4,8/6 = 4/5

AB/BD = 8/10 = 4/5

Do đó tam giác AHB đồng dạng với tam giác BCD

Bài 1 : Cho Δ ABC có 3 góc nhọn , AB = 2cm , AC = 4cm . Trên cạnh AC lấy điểm M sao cho \(\widehat{ABM}=\widehat{ACB}\) . a, Chứng minh : Δ ABM ∼ ΔACB b, Tính AM c, Từ A kẻ AH ⊥ BC , AK ⊥ BM . Chứng minh AB.AK=AM.AH d , chứng ming rằng : SAHB = 4SAKM Bài 2 : Cho Δ ABC vuông tại A , có \(\widehat{B}=\widehat{2C}\) , đường cao AD . a, Chứng minh : ΔADB ∼ ΔCAB b, Kẻ tia phân giác \(\widehat{ABC}\) cắt AD tại F và AC tại E . Chứng minh AB2 =...
Đọc tiếp

Bài 1 : Cho Δ ABC có 3 góc nhọn , AB = 2cm , AC = 4cm . Trên cạnh AC lấy điểm M sao cho \(\widehat{ABM}=\widehat{ACB}\) .

a, Chứng minh : Δ ABM ∼ ΔACB

b, Tính AM

c, Từ A kẻ AH ⊥ BC , AK ⊥ BM . Chứng minh AB.AK=AM.AH

d , chứng ming rằng : SAHB = 4SAKM

Bài 2 : Cho Δ ABC vuông tại A , có \(\widehat{B}=\widehat{2C}\) , đường cao AD .

a, Chứng minh : ΔADB ∼ ΔCAB

b, Kẻ tia phân giác \(\widehat{ABC}\) cắt AD tại F và AC tại E . Chứng minh AB2 = AE.AC

c, Chứng minh : \(\frac{DF}{FA}=\frac{AE}{EC}\)

d, Tính tỷ số diện tích của ΔBFC và ΔABC .

Bài 3 : Cho tam giác ABC vuông tại A , đường cao AH chia cạnh huyền BC thành hai đoạn BH = 9cm và CH =16cm .

a, Chứng minh : ΔABH ∼ ΔCAH ; Tính diện tích ΔABC

b, Gọi M , N lần lượt là trung điểm của AH và HC . Đường thẳng BM cắt AN tại K . Chứng minh : MK là đường cao của ΔAMN .

c, Gọi D là điểm đối xứng của C qua điểm A . Chứng minh : AB.DH= 2AD.BM

các bạn ơi ! giúp mình với đi !!!!!!!!!!!!!!!!!!!!

1
28 tháng 4 2019

Bài 1

A B C M H K 1 a, Xét ΔABM và ΔACB có

\(\left\{{}\begin{matrix}\widehat{BAC}\text{ chung}\\\widehat{ABM}=\widehat{C}\text{(gt)}\end{matrix}\right.\)

⇒ ΔABM ~ ΔACB (g.g)(đpcm)

b, Vì ΔABM ~ ΔACB

\(\frac{AB}{AC}=\frac{AM}{AB}\)

⇒ AB2 = AM . AC

⇒ AM = \(\frac{AB^2}{AC}=\frac{2^2}{4}=\frac{4}{4}=1\) (cm)

Vậy AM = 1cm

c, Vì ΔABM ~ ΔACB

\(\widehat{M_1}=\widehat{ABC}\)

\(\widehat{M_1}=\widehat{ABH}\)

Vì AH ⊥ BC ⇒ \(\widehat{AHB}=90^0\)

AK ⊥ BM ⇒ \(\widehat{AKM}=90^0\)

ΔAHB và ΔAKM có

\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{M_1}\\\widehat{AHB}=\widehat{AKM}=90^0\end{matrix}\right.\)

⇒ ΔAHB ~ ΔAKM (g.g)

\(\frac{AB}{AM}=\frac{AH}{AK}\)

⇒ AB . AK = AH . AM (đpcm)

d, Vì ΔABH ~ ΔAMK

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{AB}{AM}\right)^2\) (Tỉ số diện tích của 2 tam giác đồng dạng bằng bình phương tỉ số đồng dạng)

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{2}{1}\right)^2\)

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=4\)

⇒ SΔABH = 4SΔAMK (đpcm)

13 tháng 12 2017

Hình bạn tự vẽ nha!

a,  ta có:

Góc A=Góc D=90°(gt)<=>AD_|_DC

BH_|_DC

=>BH//AD

ABCD là hình thang nên AB//CD

=>Tứ giác ABHD là hình chữ nhật.

b,Do ABHD  là hình chữ nhật, nên:

AB=HD=3cm

CD=6cm=>HC=6-3=3 cm

Do BH_|_CD(gt)=>góc BHC=90°

=>tam giác BHC vuông tại H

Xét tam giác vuông BHC:

Theo định lý pitago trong tam giác vuông thì:

BC^2=HC^2+BH^2

=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16

=>BH=4 cm

=>Diện tích hình chữ nhật ABHD là:

3.4=12 cm2

c,Do M là M là trung điểm của BC nên:

MB=MC=BC/2=5/2=2,5cm

Do N đối xứng với M qua E (gt)nên:

EM=EN

Đường chéo AH^2=AD^2+DH^2=25cm

=>AH=5cm=>EH=5/2=2,5cm

=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm

EM+EN=2AB=6 cm

AB//HC=3cm;BC//AH=5cm

=>NM//DC=6cm

==> Tứ giác NMCD  là hình bình hành

d,bạn tự chứng minh (khoai quá)

26 tháng 5 2021

a, Xét tam giác AHB và tam giác BCD ta có : 

^AHB = ^BCD = 900

^BDC = ^ABH ( so le trong )

Vậy tam giác AHB ~ tam giác BCD ( c.g.c )

b, Xét tam giác ADB và tam giác HAD 

^A = ^H = 900

^D _ chung 

Vậy tam giác ADB ~ tam giác HAD ( g.g )

⇒ADAH=BDAD⇒ADAH=BDAD( tỉ số đồng dạng ) ⇒AD2=BD.DH

c) -Ta có: AD2= DH.DB(cmt)

=> DH= AD2:DB

     DH=3^2:5=9:5=1,8

    - Xét tam giác BDC vuông tại C có:

      DB^2 = BC^2+CD^2

      DB^2=3^2+4^2=25

=> BD=5cm

Ta có: tam giác AHB ~ tam giác BCD(CM câu a)

=> AH/BC=AB/BD

=> AH=AB.BC:BD

<=> AH=3.4:5=2,4cm

d) Ta có diện tích tam giác AHB= 1/2 AB.AH=1/2x2,4x4=4.8

     Ta có diện tích tam giác BCD= 1/2 BC.DC=1/2x3x4=6

S ABH/ S BCD= 4,8/6=4/5

2 tháng 4 2021

undefined

6 tháng 2 2022

a) và (b không nhìn rõ

a)Xét tam giác HBA và tam giác ABD có:

góc AHB=góc DAB(=90độ)

góc B chung

=> tam giác HBA đồng dạng tam giác ABD (g-g)

b) xét tam giác HDA và tam giác ADB có

góc AHD =góc DAB(=90độ)

góc D chung

=> tam giác HDA đồng dạng tam giác ADB (g-g)

=>AD/BD=HD/BD=>AD^2=DH.BD

c)vì ABCD là hcn=> BC=AD=6cm

tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)

=>BD^2=6^2+8^2

=>BD=10(cm)

Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)

tam giác ADH vuông tại H

=>Ad^2=AH^2+HD^2(ĐL Pytago)

=>6^2=AH^2+3,6^2

=>AH=4.8(cm)