K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

b: Xét ΔEHB vuông tại E và ΔDHC vuông tại H có 

\(\widehat{EHB}=\widehat{DHC}\)

Do đó: ΔEHB\(\sim\)ΔDHC

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)

hay \(HE\cdot HC=HB\cdot HD\)

c: Xét tứ giác HBKC có

HB//KC

HC//BK

Do đó: HBKC là hình bình hành

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

hay H,M,K thẳng hàng

Câu 1:

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc BAD chung

DO đo: ΔADB đồng dạng với ΔAEC

Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

Do đó: ΔADE đồng dạng với ΔABC

Suy ra: DE/BC=AD/AB

hay \(DE\cdot AB=AD\cdot BC\)

c: Xét ΔOBE và ΔODC có

góc OBE=góc ODC

góc BOE chung

Do đo: ΔOBE đồng dạng với ΔODC

Suy ra: OB/OD=OE/OC

hay \(OB\cdot OC=OE\cdot OD\)

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H1. Chứng minh tam giác ABE và tam giác ACF đồng dạngXét \(\Delta ABE\) và \(\Delta ACF\) :\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )\(\widehat{A}\) chung\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)Xét tam giác AEF và tam giác...
Đọc tiếp

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H

1. Chứng minh tam giác ABE và tam giác ACF đồng dạng

Xét \(\Delta ABE\) và \(\Delta ACF\) :

\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)

Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Xét tam giác AEF và tam giác ABC:

\(\widehat{A}\) chung

\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)

3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)

Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

 

3
NV
22 tháng 4 2021

\(BE||DM\) (cùng vuông góc AC)

Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)

\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)

Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)

Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)

\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)

Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)

(1); (2) suy ra đpcm

NV
22 tháng 4 2021

undefined

5 tháng 1 2018

A B C D E I

Đặt \(\frac{EI}{ID}=k\).

Ta có \(S_{DIA}+S_{IAE}=S_{DAC}\left(=\frac{1}{4}S_{DEC}\right)\Rightarrow\left(1+k\right)S_{DIA}=S_{DAC}\)

Lại có : \(\frac{S_{DIC}}{S_{DBC}}=\frac{S_{DEC}}{k+1}:\frac{S_{DEC}}{2}=\frac{2}{k+1}\)

\(\Rightarrow\frac{\left(k+1+1\right)S_{DIA}}{2\left(k+1\right)S_{DIA}}=\frac{2}{k+1}\Rightarrow\frac{k+2}{2k+2}=\frac{2}{k+1}\Rightarrow k=2\)

Vậy thì EI = 2 ID hay \(DI=\frac{DE}{3}\)

4 tháng 4 2018

sao bằng 1/4 DEC đc vậy