K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

Lỗi không vẽ được nha bạn !!! 

a) Xét tứ giác ABOC có : 

ABO + ACO = 90O + 90O =180O nên tứ giác ABOC nội tiếp ( đpcm ) 

b) Xét \(\Delta\)MBN và \(\Delta\)MCB có : 

M chung

MBN = MCB ( cùng chắn cung BN  ) 

=>  \(\Delta\)MBN ~ \(\Delta\)MCB ( g - g ) nên \(\frac{MB}{MC}=\frac{MN}{MB}\Leftrightarrow MB^2=MN.MC\left(đpcm\right)\)

c) Xét \(\Delta\)MAN và \(\Delta\)MCA có góc M chung 

Vì M là trung điểm của AB nên MA = MB 

Theo câu b ta có : MA2 = MN . MC <=> \(\frac{MA}{MN}=\frac{MC}{MC}\)

Do đó \(\Delta\)MAN ~ \(\Delta\)MCA  ( c - g - c ) 

=> góc  MAN =góc MCA = góc NCA ( 1 ) 

mà : góc  NCA = góc NDC ( cùng chắn cung NC )                ( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : góc  MAN = góc  NDC hay góc  MAN  = góc ADC (đpcm ) 

7 tháng 4 2020

Mình chỉ biết làm câu a, thoi nhé thông cảm , :<<<<

a, Ta có : \(OB \perp AB\Rightarrow\widehat{oBa}=90^o\)

\(OC \perp AC \Rightarrow\widehat{oCa}=90^o\)

Xét tứ giác ABOC có : \(\widehat{oBa}=\widehat{oCa}=90^o\)

=> Tứ giác ABOC nội tiếp ( Tổng 2 góc = 180o )

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk

a: góc ABO+góc ACO=90+90=180 độ

=>ABOC nội tiếp

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

8 tháng 5 2020

ajnomoto