K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

a, Ta có AH.AO=AB^2 ( theo hệ thức lượng)

            AM.AN=BC^2  (bạn xét tam giác ACM và ANC đồng dạng theo trường hợp g-g)

Mà AB=AC (t/c 2 tt cắt nhau) ===> AH.AO=AM.AN

26 tháng 8 2020

ựa tam giác đồng dạng thì góc nào với góc nào đấy các ae

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

26 tháng 3 2021

vẽ hình hộ mik vs

 

a: góc ABO+góc ACO=90+90=180 độ

=>ABOC nội tiếp

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)

nên ABOC là tứ giác nội tiếp

Tâm là trug điểm của AO

b: Xét (O) có

AB là tiếp tuýen

AC là tiếp tuyến

Do đó: AB=AC
mà OB=OC

nên OA là đường trung trực của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(1\right)\)

Xét ΔABM và ΔANB có

\(\widehat{ABM}=\widehat{ANB}\)

\(\widehat{BAM}\) chung

Do đo; ΔABM\(\sim\)ΔANB

Suy ra: AB/AN=AM/AB

hay \(AB^2=AN\cdot AM\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AO=AM\cdot AN\)

26 tháng 2 2021

Vì \(\widehat{ABO}\)là góc tạo bởi tia tiếp tuyến AB và dây cung BD ( đường kính AB )

\(\Rightarrow\widehat{ABO}=\frac{1}{2}.\widehat{BOD}=\frac{1}{2}.180^o=90^o\)

Chứng mình ương tự với \(\widehat{ACO}\), suy ra \(\widehat{ACO}=90^o\)

Xét tứ giác ABOC có : 

Góc ABO và góc ACO là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)

=> Tứ giác ABOC nội tiếp đường tròn ( theo tính chất tổng hai góc đối bằng 180 độ ... )

Gọi I là trung điểm của AB

Có tam giác ABO vuông tại B, trung tuyến là BI

=> BI = 1/2.AO=AI=IO (1)

Tam giác ACO vuông tại C, có trung tuyến là CI

=> CI=1/2.AO=AI=IO (2)

Từ (1) và (2) => BI = AI = IO = IC

=> I cách đều 4 đỉnh tứ giác ABOC 

=> I là tâm đường tròn ngoại tiếp tứ giác ABOC , có bán kinh R= 1/2.AO

6 tháng 5 2021

a) Vì AB,AC là tiếp tuyến của (O) \(\Rightarrow\hept{\begin{cases}AB\perp OB\\AC\perp OC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{ACO}=90^0\end{cases}}\)

Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác ABOC

\(\Rightarrow ABOC\)nội tiếp ( dhnb )

b) Xét (O) có AB là tiếp tuyến tại B ; MB là dây cung

\(\Rightarrow\widehat{ABM}=\widehat{ANB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)

Xét tam giác ABM và tam giác ANB có:

\(\hept{\begin{cases}\widehat{BAN}chung\\\widehat{ABM}=\widehat{ANB}\left(cmt\right)\end{cases}\Rightarrow\Delta ABM~\Delta ANB\left(g-g\right)}\)

\(\Rightarrow\frac{AB}{AM}=\frac{AN}{AB}\Rightarrow AB^2=AM.AN\left(1\right)\)

c)  Gọi H là giao điểm của BC và AO 

Xét tam giác ABH và tam giác AOB có:

\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{AHB}=\widehat{ABO}=90^0\end{cases}}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\Rightarrow AB^2=AO.AH\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AM.AN=AH.AO\)

\(\Rightarrow\frac{AM}{AH}=\frac{AO}{AN}\)

Xét tam giác AMH và tam giác AON có:

\(\hept{\begin{cases}\widehat{NAO}chung\\\frac{AM}{AH}=\frac{AO}{AN}\left(cmt\right)\end{cases}\Rightarrow\Delta AMH~\Delta AON\left(c-g-c\right)}\)

\(\Rightarrow\widehat{AHM}=\widehat{ANO}\)

Mà \(\widehat{AHM}+\widehat{MHO}=180^0\)

\(\Rightarrow\widehat{ANO}+\widehat{MHO}=180^0\)

Xét tứ giác MHON có 

\(\widehat{ANO}+\widehat{MHO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác  MHON

\(\Rightarrow MHON\)nội tiếp ( dhnb ) 

\(\Rightarrow\widehat{NMO}=\widehat{NHO}\left(3\right)\)

Vì H là giao điểm của BC và AO ( h.vẽ )

Mà \(AB,AC\)là tiếp tuyến của (O)

\(\Rightarrow BC\perp OA\)

\(\Rightarrow\widehat{BHO}=90^0\)

Vì NF là tiếp tuyến của (O) tại N

\(\Rightarrow\widehat{ÒNF}=90^0\)

Xét tứ giác FHON có:\(\widehat{FHO}+\widehat{FNO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác FHON

=> FHON nội tiếp ( dhnb )

\(\Rightarrow\widehat{NHO}=\widehat{NFO}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{NMO}=\widehat{NFO}\)

\(\Rightarrow FMON\)nội tiếp (dhnb)

\(\Rightarrow\widehat{FMO}+\widehat{FNO}=180^0\)

\(\Rightarrow\widehat{FMO}=90^0\)

\(\Rightarrow FM\perp OM\)

\(\Rightarrow FM\)là tiếp tuyến của (O) 

d)  Vì E thuộc đường tròn ngoại tiếp tam giác MNO 

\(\Rightarrow E\)thuộc đường tròn đường kính OF

\(\Rightarrow\widehat{OEF}=90^0\)

+) Vì E thuộc đường tròn ngoại tiếp tứ giác ABOC hay E thuộc đường tròn đường kính AO

\(\Rightarrow\widehat{AEO}=90^0\)

\(\Rightarrow\widehat{OEF}+\widehat{AEO}=180^0\)

\(\Rightarrow A,E,F\)thẳng hàng

Lại có vì góc AEO= 90 độ \(\Rightarrow OE\perp AF\left(5\right)\)

Gọi K là trung điểm của MN

\(\Rightarrow OF\perp MN\)

\(\Rightarrow AK\perp OF\)

Xét tam giác AOF có: \(\hept{\begin{cases}AK\perp OF\\FH\perp AO\end{cases}}\)mà AK cắt FH tại P

=> P là trực tâm của tam giác AOF

\(\Rightarrow OP\perp AF\left(6\right)\)

Từ (5) và (6) \(\Rightarrow O,E,P\)thẳng hàng ( đpcm )

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em