Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : góc KAC = góc KAO + góc OAC góc BAD = góc BAI + góc IAD Xét tam giác ACK và tam giác ABD có AB= AK (GT) AC = AD (GT) góc KAC = góc BAD (cmt ) Vậy tam giác ACK = tam giac ADB ( C-G-C )
Lời giải:
a) Xét tam giác $ACK$ và $ADB$ có: (thứ tự đỉnh của bạn bị lộn nhé)
\(AC=AD\) (gt)
\(AK=AB\) (gt)
\(\widehat{CAK}=\widehat{BAD}(=\widehat{A}+90^0)\)
\(\Rightarrow \triangle ACK=\triangle ADB(c.g.c)\)
b) Gọi $O$ là giao điểm của $KC$ và $BD$
$T$ là giao điểm của $AB$ và $KC$
Từ tam giác bằng nhau ở phần a suy ra:
\(\widehat{K_1}=\widehat{B_1}\)
Mặt khác, ta cũng có \(\widehat{T_1}=\widehat{T_2}\) (đối đỉnh)
\(\Rightarrow \widehat{K_1}+\widehat{T_1}=\widehat{B_1}+\widehat{T_2}\)
\(\Rightarrow 180^0-(\widehat{K_1}+\widehat{T_1})=180^0-(\widehat{B_1}+\widehat{T_2})\)
\(\Rightarrow \widehat{KAT}=\widehat{BOT}\) hay \(\widehat{BOT}=90^0\)
Từ đây \(\Rightarrow KC\perp BD\) (đpcm)
Ta có hình vẽ:
A B C D E 1 2 3 I O
a) Có: A1 + A2 = 90o + A2 = EAC
A2 + A3 = A2 + 90o = BAD
Do đó, EAC = BAD
Xét Δ EAC và Δ BAD có:
AE = AB (gt)
EAC = BAD (cmt)
AC = AD (gt)
Do đó, Δ EAC = Δ BAD (c.g.c)
=> CE = BD (2 cạnh tương ứng) (đpcm)
b) Δ EAI vuông tại A có: AEI + EIA = 90o
Mà EIA = BIO (đối đỉnh)
nên AEI + BIO = 90o hay AEC + BIO = 90o
Do đó, AEC phụ với BIO (đpcm)
c) Δ EAC = Δ BAD (câu a) => AEC = ABD (2 góc tương ứng)
Lại có: AEC + BIO = 90o (câu b)
nên ABD + BIO = 90o hay IBO + BIO = 90o
=> IBO phụ với BIO (1)
Δ BIO có: IBO + BIO + BOI = 180o
=> 90o + BOI = 180o
=> BOI = 180o - 90o = 90o
\(\Rightarrow CE\perp BD\left(2\right)\)
(1) và (2) là đpcm
a, Xét ΔABE=ΔACD
có: AB=AC
^A là góc chung
AD=AE
==> ΔABE=ΔACD(c-g-c)
b, Xét ΔKBD và ΔKCE
^K1=^K2 (đđ)
BD=CE( AB=AC và AD=AE)
KD=KE
==> ΔKBD=ΔKCE (c-g-c)
c, Xét ΔAKB và ΔAKC
có AK cạnh chung
KB=KC
AB=AC
=>ΔAKB = ΔAKC (c-c-c)
=> ^BAK= ^CAK mà AK là cạnh chung
=> AK là tia phân giác của góc BAC
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABE\) và \(ACD\) có:
\(AE=AD\left(gt\right)\)
\(AB=AC\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABE=\Delta ACD\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABE=\Delta ACD.\)
=> \(\widehat{AEB}=\widehat{ADC}\) (2 góc tương ứng).
=> \(\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng)
Hay \(\widehat{DBI}=\widehat{ECI}.\)
Ta có:
\(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\) (các góc kề bù).
Mà \(\widehat{AEB}=\widehat{ADC}\left(cmt\right)\)
=> \(\widehat{BDC}=\widehat{CEB}.\)
Hay \(\widehat{BDI}=\widehat{CEI}.\)
Lại có:
\(\left\{{}\begin{matrix}AD+DB=AB\\AE+EC=AC\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AD=AE\left(gt\right)\end{matrix}\right.\)
=> \(DB=EC.\)
Xét 2 \(\Delta\) \(IBD\) và \(ICE\) có:
\(\widehat{DBI}=\widehat{ECI}\left(cmt\right)\)
\(BD=EC\left(cmt\right)\)
\(\widehat{BDI}=\widehat{CEI}\left(cmt\right)\)
=> \(\Delta IBD=\Delta ICE\left(g-c-g\right)\left(đpcm\right).\)
Chúc bạn học tốt!
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
a: Xét ΔABK có BA=BK
nên ΔABK cân tại B
mà góc ABK=60 độ
nên ΔABK đều
b: đề sai rồi bạn
Vì góc HBC<góc BHC nên chắc chắn HC<BC
=>Đề sai rồi
A D K B C 1 2
Giải:
Ta có: AB = AC
AB = AK
AC = AD
=> AD = AK (1)
Xét \(\Delta ABK\) có: \(\widehat{BAK}=\widehat{BAC}+\widehat{A_2}=\widehat{BAC}+90^o\)
Xét \(\Delta ACD\) có: \(\widehat{DAC}=\widehat{BAC}+\widehat{A_1}=\widehat{BAC}+90^o\)
\(\Rightarrow\widehat{BAK}=\widehat{DAC}\left(=\widehat{BAC}+90^o\right)\)(2)
Xét \(\Delta ABK,\Delta ACD\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAK}=\widehat{DAC}\) ( theo (2) )
\(AD=AK\) ( theo (1) )
\(\Rightarrow\Delta ABK=\Delta ACD\left(c-g-c\right)\) ( đpcm )