\(\Delta\)ABC có AB=AC. Lấy điểm D, E lần lượt trên cạnh AB, AC sao cho AD=AE. Gọi I...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABE\)\(ACD\) có:

\(AE=AD\left(gt\right)\)

\(AB=AC\left(gt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABE=\Delta ACD\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta ABE=\Delta ACD.\)

=> \(\widehat{AEB}=\widehat{ADC}\) (2 góc tương ứng).

=> \(\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng)

Hay \(\widehat{DBI}=\widehat{ECI}.\)

Ta có:

\(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\) (các góc kề bù).

\(\widehat{AEB}=\widehat{ADC}\left(cmt\right)\)

=> \(\widehat{BDC}=\widehat{CEB}.\)

Hay \(\widehat{BDI}=\widehat{CEI}.\)

Lại có:

\(\left\{{}\begin{matrix}AD+DB=AB\\AE+EC=AC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AD=AE\left(gt\right)\end{matrix}\right.\)

=> \(DB=EC.\)

Xét 2 \(\Delta\) \(IBD\)\(ICE\) có:

\(\widehat{DBI}=\widehat{ECI}\left(cmt\right)\)

\(BD=EC\left(cmt\right)\)

\(\widehat{BDI}=\widehat{CEI}\left(cmt\right)\)

=> \(\Delta IBD=\Delta ICE\left(g-c-g\right)\left(đpcm\right).\)

Chúc bạn học tốt!

26 tháng 12 2017

a, Xét ΔABE=ΔACD

có: AB=AC

^A là góc chung

AD=AE

==> ΔABE=ΔACD(c-g-c)

b, Xét ΔKBD và ΔKCE

^K1=^K2 (đđ)

BD=CE( AB=AC và AD=AE)

KD=KE

==> ΔKBD=ΔKCE (c-g-c)

c, Xét ΔAKB và ΔAKC

có AK cạnh chung

KB=KC

AB=AC

=>ΔAKB = ΔAKC (c-c-c)

=> ^BAK= ^CAK mà AK là cạnh chung

=> AK là tia phân giác của góc BAC

4 tháng 11 2016

 

a/ Xét tam giác BCD và tam giác BCE có

-góc B = góc C

-BD = EC

-BC: cạnh chung

=> tam giác BCD = tam giác BCE (cạnh góc cạnh)

=> BE=CD (2 cạnh tương ứng)

b/ Xét tam giác KBD và tam giác KCE có

-Góc BKD = góc CKE (đối đỉnh)

-BD=CE

-KB=KC

=> tam giác KBD = tam giác KCE

5 tháng 11 2016

ở câu a tại sao góc b= góc c vậy bn

22 tháng 10 2016

Giúp mk đi khocroi

13 tháng 3 2017

Ta có hình vẽ:

A B C D E K

a/ Xét \(\Delta ABE\)\(\Delta ACD\) có:

AB = AC (gt)

\(\widehat{A}:chung\)

AE = AD (gt)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\left(đpcm\right)\)

b/ Vì \(\Delta ABE=\Delta ACD\left(ýa\right)\)

\(\Rightarrow\left\{{}\begin{matrix}BE=CD\\\widehat{ABE}=\widehat{ACD}\end{matrix}\right.\) (đpcm)

c/ Ta có: AD + BD = AB

AE + CE = AC

mà AD = AE(gt) ; AB = AC(gt)

=> BD = CE

Xét \(\Delta DBC\)\(\Delta ECB\) có:

BD = CE (cmt)

\(\widehat{DBC}=\widehat{ECB}\) (\(\Delta ABC\) cân tại A)

BC: chung

=> \(\Delta DBC=\Delta ECB\left(c-g-c\right)\)

=> \(\widehat{BDC}=\widehat{CEB}\) (g t/ứng)

Xét \(\Delta KBD\)\(\Delta KCE\) có:

\(\widehat{ABE}=\widehat{ACD}\left(đãcm\right)\)

BD = CE (đã cm)

\(\widehat{BDC}=\widehat{CEB}\left(cmt\right)\)

=> \(\Delta KBD=\Delta KCE\left(g-c-g\right)\)

=> KB = KC (c t/ứng)

=> \(\Delta KBC\) là tam giác cân tại K

13 tháng 3 2017

Tự vẽ hình nhoa!

a) Vì \(\Delta ABC\) cân tại A

\(\Rightarrow AB=AC\)\(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta ABE\)\(\Delta ACD\) có:

\(AB=AC\)

\(\widehat{A}\) chung

\(AE=AD\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)

b) Vì \(\Delta ABE=\Delta ACD\) (câu a)

\(\Rightarrow BE=CD\)\(\widehat{ABE}=\widehat{ACD}\)

c) Ta có: \(\widehat{ABC}-\widehat{ABE}=\widehat{ACB}-\widehat{ACD}\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)

hay \(\widehat{KBC}=\widehat{KCB}\)

\(\Rightarrow\Delta KBC\) cân tại K.

2 tháng 2 2019

tự vẽ hình

a) Xét tam giác ABE và tam giác ACD, ta có:

Góc BAE= góc DAC(hay góc A là góc chung)

AD=AC(gt)

AD=AE(gt)

Vậy tam giác ABE = tam giác ACD (c-g-c)

=> BE=CD ( cặp cạnh t/ứng)

=> góc ABE=góc ACD (cặp góc t/ứng) hay góc ABK=góc ACK

 b) Vì AB=AC, AD=AE => BD=CE( vì AD+BD=AB;AE+EC=AC)

tam giác DBK có: góc D+góc B+góc K=180 độ

tam giác KCE có: góc K+góc C+góc E=180 độ

mà Góc B= góc C(cmt) và Góc K1=Góc K1(đối đỉnh)---bạn tự kí hiệu nha :")

=> góc D=góc E

Xét tam giác BKD và tam giác KCE, ta có:

Góc BDK=góc KEC(cmt)

Góc DBK=góc ECK(cmt)

DB=CE(cmt)

Vậy tam giác BKD = tam giác KCE(g-c-g)

=> DK=EK(cặp cạnh tướng ứng)

c) Xét tam giác ADK và tam giác AEK, ta có:

AD=AE(gt)

DK=KE(cmt)

AK là cạnh chung

Vậy tam giác ADK= tam giác AEK(c-c-c)

=> góc DAK=góc EAK(cặp góc t/ứng) hay góc BAK=góc CAK

=> AK là p/g của góc BAC

d) Góc BAK=góc CAK hay góc BAI=góc CAI

Xét tam giác BAI và tam giác CAI, ta có:

AB=AC(gt)

AI là cạnh chung

Góc BAI=góc CAI (cmt)

Vậy tam giác BAI = tam giác CAI(c-g-c)

=>Góc AIB=góc AIC(cặp góc t/ứng)

mà góc AIB+góc AIC=180 độ => AIB=AIC=90 độ

=> AI vuông góc với BC

12 tháng 1 2020

A B C D E F

  GT  

 △ABC: AB < AC. BAD = DAC = BAC/2 (D \in BC)

 E \in AC : AE = AB

 F \in AB : AF = AC

 KL

 a, △ABD = △AED

 b, AD ⊥ FC

 c, △BDF = △EDC ; BF = EC

 d, F, D, E thẳng hàng

Bài làm:

a, Xét △ABD và △AED

Có: AB = AE (gt)

    BAD = DAE (gt) 

 AD là cạnh chung

=> △ABD = △AED (c.g.c)

b, Vì △ABD = △AED (cmt)

=> BD = ED (2 cạnh tương ứng)

=> D thuộc đường trung trực của BE   (1)

Vì AB = AE (gt) => A thuộc đường trung trực của BE   (2)

Từ (1) và (2) => AD là đường trung trực của BE

=> AD ⊥ FC

c, Vì △ABD = △AED (cmt)

=> ABD = AED (2 góc tương ứng)

Ta có: ABD + DBF = 180o (2 góc kề bù)

AED + DEC = 180o (2 góc kề bù)

Mà ABD = AED (cmt)

=> DBF = DEC

Lại có: AB + BF = AF

AE + EC = AC

Mà AB = AE (gt) ; AF = AC (gt)

=> BF = EC

Xét △BDF và △EDC

Có: BD = ED (cmt)

    DBF = DEC (cmt)

      BF = EC (cmt)

=> △BDF = △EDC (c.g.c)

d, Vì △BDF = △EDC (cmt)

=> BDF = EDC (2 góc tương ứng)

Ta có: BDE + EDC = 180o (2 góc kề bù)

=> BDE + BDF = 180o

=> FDE = 180o

=> 3 điểm F, D, E thẳng hàng

28 tháng 8 2017

a) Xét ∆BEA và ∆CDA, ta có:

BA = CA (gt)

\(\widehat{A}\)chung

AE = AD (gt)

Suy ra: ∆BEA = ∆CDA (c.g.c)

Vậy BE = CD (hai cạnh tương ứng)

b) ∆BEA = ∆CDA (chứng minh trên)

\(\widehat{\text{B1}}=\widehat{\text{C1}}\);\(\widehat{\text{E1}}=\widehat{\text{D1}}\) (hai góc tương ứng)

\(\widehat{\text{E1}}+\widehat{\text{E2}}\)=180o (hai góc kề bù)

\(\widehat{\text{D1}}+\widehat{\text{D2}}\)=180o (hai góc kề bù)

Suy ra: \(\widehat{\text{E2}}=\widehat{\text{D2}}\)

AB = AC (gt)

AE + EC = AD + DB mà AE = AD (gt) => EC = DB

Xét ∆ODB và ∆OCE, ta có:

\(\widehat{\text{E2}}=\widehat{\text{D2}}\) (chứng minh trên)

DB = EC (chứng minh trên)

\(\widehat{\text{B1}}=\widehat{\text{C1}}\)(chứng minh trên)

Suy ra: ∆ODB = ∆OEC (g.c.g)

23 tháng 12 2021

Chuẩn quá chời!