\(\Delta\)ABC có AB=AC=5cm, BC=8cm. Kẻ AH\(\perp\)BC tại...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

A B C H E D

a) tg AHB và tg AHC: AHB^ = AHC^ = 90o; AB = AC; AH chung

=> tg AHB = tg AHC (ch_cgv)

=> HB = HC (2 cạnh t/ứng) ; BAH^ = CAH^ (2 góc t/ứng)

b) BC= BH + HC = 2HC = 8 => HC = BC/2 = 4 (cm)

tg AHC: \(AH=\sqrt{AC^2-HC^2}=\sqrt{25-16}=3\left(cm\right)\)

c) tg ADH và tg AEH: ADH^ = AEH^ = 90o; AH chung; ADH^ = EAH^

=> tg ADH = tg AEH (ch_gn)

=> AD =AE (2 cạnh t/ứng)

Vậy tg DAE cân tại A (AD = AE)

26 tháng 2 2018

A B C H D E

a) Xét \(\Delta ABC\) có :

AB = AC (gt)

=> \(\Delta ABC\) cân tại A

\(\Delta ABH,\Delta ACH\) có :

\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)

\(AB=AC\left(gt\right)\)

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)

=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)

b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :

\(AH^2=AB^2-BH^2\) (Định lí PITAGO)

=> \(AH^2=5^2-4^2=9\)

=> \(AH=\sqrt{9}=3\left(cm\right)\)

c) Xét \(\Delta DBH,\Delta ECH\) có :

\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)

\(BH=CH\)(cm câu a)

\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)

=> ​\(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)

=> \(HD=HC\) (2 cạnh tương ứng)

=> \(\Delta HDE\) cân tại H.

23 tháng 4 2018

Bạn tự vẽ hình nha.

a) Xét tam giác ABH và tam giác ACH

Ta có: Góc AHB = Góc AHC ( = 90 độ )

          AB = AC ( Vì tam giác ABC cân )

          Góc ABH = Góc ACH ( Vì tam giác ABC cân )

=> Tam giác ABH = Tam giác ACH ( ch-gn )

=> HB = HC ( hai cạnh tương ứng )

     Góc BAH = Góc CAH ( Hai góc tương ứng 0

=> Đpcm

b) Vì HB = HC ( câu a )

Mà BC = HB + HC

=> HB = HC = BC / 2 = 8 / 2 = 4 cm

Xét tam giác ABH vuông tại H

=> AH2 + BH2 = AB2

Hay AH2 + 42 = 52

=> AH2 = 52 - 42

=> AH2 = 9

=> AH = 3

c) Xét tam giác AHD và tam giác AHE

Ta có: Góc ADH = Góc AEH ( = 90 độ )

          AH là cạnh huyển chung

         Góc BAH = Góc CAH ( câu a )

=> Tam giác AHD = Tam giác AHE ( ch-gn )

=> HD = HE ( Hai cạnh tương ứng )

=> Tam giác HDE cân tại H

=> Đpcm

23 tháng 4 2018
bn Myy_Yukru ở phần a) xét tam giác thì bn xét có 2 góc 1 cạnh => là trg hợp c-g-c bn ak
12 tháng 2 2019

A B C H

Cm: Xét t/giác ABH và t/giác ACH

có góc B = góc C (vì t/giác ABC cân tại A)

 AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> HB = HC (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)

Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:

 AB2 = HB2 + AH2 

=> AH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3

Vậy AH = 3 cm

c) Xem lại đề

12 tháng 2 2017

A B C D M

a) tg ABM và tg DCM: AM = DM; BM = CM ; AMB^ = DMC^

=> tg ABM = tg DCM (c.g.c) (*)

b) (*) => ABM^ = DCM^ (2 góc tương ứng)

Mà ABM^ và DCM^ ở vị trí sole trong => AB // DC

c) tg BAC: AB = AC; AM là trung tuyến (**) => AM là đường cao hay AM _|_ BC

d) (*) => BAM^ = CDM^ (2 góc t/ứng) (1)

(**) => BAM^ = CAM^ (2)

Từ (1) và (2) => CDM^ = BAM^ = CAM^ = 30o

Mà BAC^ = BAM^ + CAM^ = 2* 30o = 60o ; tg ABC cân tại A

Vậy CDM^ = 30o <=> tg ABC đều

8 tháng 3 2020
https://i.imgur.com/Z6XuSBc.jpg
14 tháng 1 2020

Trả lời : Bn tham khảo link này : 

https://h.vn/hoi-dap/question/559410.html 

( Vào thống kê hỏi đáp của mk sẽ thấy ) 

14 tháng 1 2020

Đây mới là lin kđúng : Câu hỏi của Đoàn Nhật Nam - Toán lớp 7 | Học trực tuyến 

Xl cậu ( vào thống kê của mk sẽ thấy 

23 tháng 1 2017

Bài này mk làm rồi, bn vào trang của mk là thấy nhé, cần thì link luôn thể; https://hoc24.vn/hoi-dap/question/172618.html

15 tháng 4 2018

( hình bn tự vẽ )

Giải

Xét ΔAHB và ΔAHC có

AH là cạnh chung

góc AHB = góc AHC =90o ( AH⊥BC )

AB=AC ( ΔABC cân tại A )

=> ΔAHB = ΔAHC (ch_cgv)

=> HB=HC ( 2 cạnh tương ứng )

Vậy HB=HC

b) Ta có HB = HC ( theo câu a)

=> H là trung điểm BC => HB=HC = 1/2 BC

MÀ BC = 8cm( gt) => HB=HC = 1/2 . 8=4 ( cm )

Xét ΔAHB vuông tại H

=> AB2 = HA2+HB2 ( định lý Pi-ta-go)

THay số ta có

52=AH2 + 42

=> AH2 = 52-42

=> AH2=9

=> AH = √9=3 ( AH>0)

Vậy AH=3cm

c)Do AH là tia phân giác của góc BAC

MÀ HD⊥AB , HE⊥AC

=> HD=HE ( tính chất )

=> ΔHDE cân tại H

Vậy ΔHDE cân tại H