Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H C 13 12 16
Chứng minh :
Xét △AHB vuông tại H ( gt ) có :
\(AB^2=AH^2+BH^2\) ( định lí Py - ta - go )
\(\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=13^2-12^2\)
\(\Rightarrow BH^2=25\)
\(\Rightarrow BH=5\left(cm\right)\left(BH>0\right)\)
Có : H ϵ BC ⇒ H nằm giữa B và C
BH + HC = BC
⇒ BC = 5 + 16 = 21 ( cm )
Xét △AHC vuông tại H ( gt ) có:
\(AC^2=AH^2+HC^2\) ( đ/l Py - ta - go )
\(\Rightarrow AC^2=12^2+16^2\)
\(\Rightarrow AC^2=400\)
\(\Rightarrow AC=20\left(cm\right)\left(AC>0\right)\)
Chu vi tam giác ABC là : 13 + 21 + 20 = 54 ( cm )
Vậy chu vi tam giác ABC là 54 cm
A B C H 13 cm 12cm 16 cm ✽ △ ABC vuông tại H
Áp dụng định lý Pitago:
→AB2+ BH2= AB2
→122+BH2=132
→ BH2= 132-122
→BH2=25
→BH=5cm
✽ Vì △ AHC vuông tại H
Áp dụng định lý Pitago:
→ AH2+ HC2=AC2
→ 122+162=AC2
→AC2=122+162
→AC2=400 → AC=20 Vì H nằm giữa B,C → BH+HC=BC →5+ 16=BC →BC=5+16 →BC= 21cm ⇒ Chu vi △ ABC: AB+ AC+ BC= △ABC → 13+20+21=△ABC → △ABC=13+20+21 →△ABC= 54cm (đpcm)
Hình (chỉ mag t/c minh họa)
20 5 12 A B C H
Áp dụng định lí Py-ta-go vào \(\Delta ABH\left(\widehat{H}=90^o\right)\) có:
\(AH^2+BH^2=AB^2.\)
mà \(AH=12cm\left(gt\right);BH=5cm\left(gt\right).\)
\(\Rightarrow12^2+5^2=AB^2.\)
\(\Rightarrow144+25=AB^2.\)
\(169=AB^2\Rightarrow AB=\sqrt{169}=13\left(cm\right).\)
Áp dụng định lí Py-ta-go vào \(\Delta AHC\left(\widehat{H}=90^o\right)\) có:
\(AH^2+HC^2=AC^2.\)
mà \(AH=12cm\left(gt\right);AC=20cm\left(gt\right).\)
\(\Rightarrow12^2+HC^2=20^2.\)
\(\Rightarrow144+HC^2=400.\)
\(\Rightarrow HC^2=400-144.\)
\(\Rightarrow HC^2=256\Rightarrow HC=\sqrt{256}=16\left(cm\right).\)
Ta có:
\(BH+HC=BC.\)
mà \(BH=5cm\left(gt\right);HC=16cm\left(cmt\right).\)
\(\Rightarrow5+16=BC.\)
\(\Rightarrow BC=21\left(cm\right).\)
Chu vi \(\Delta ABC\) là:
\(P_{\Delta ABC}=AB+AC+BC=13+21+20=54\left(cm\right).\)
Vậy..........
A B C H 12 5 20
Xét tam giác vuông ABH, theo định lí Pytago ta có:
\(AB^2=BH^2+AH^2=5^2+12^2=13^2\)
Nên AB = 13cm
Xét tam giác vuông AHC, theo định lí Pytago ta có:
\(HC^2=AC^2-AH^2=20^2-12^2=16^2\)
Nên HC = 16cm
Khi đó ta có chu vi tam giác ABC là:
\(AB+BC+CA=AB+BH+CH+CA=13+5+16+20=54\left(cm\right)\)
Vậy chu vi tam giác ABC là 54cm
Bài 1:
B A C I 12
Vì \(\Delta\)ABC đều nên AB = AC = BC = 12 cm
và \(\widehat{ABC}\) = \(\widehat{ACB}\) hay \(\widehat{ABI}\) = \(\widehat{ACI}\)
Xét \(\Delta\)ABI vuông tại I và \(\Delta\)ACI vuông tại I có:
AB = AC (c/m trên)
\(\widehat{ABI}\) = \(\widehat{ACI}\) (c/m trên)
=> \(\Delta\)ABI = \(\Delta\)ACI (ch - gn)
=> BI = CI (2 cạnh t/ư)
mà BI + CI = 12
=> BI = CI = \(\frac{12}{2}\) = 6
Áp dụng định lý pytago vào \(\Delta\)ABI vuông tại I có:
AB2 = AI2 + BI2
=> 122 = AI2 + 62
=> AI2 = 122 - 62
=> AI2 = 108
=> AI = \(\sqrt{108}\)
Vậy AI = \(\sqrt{108}\).
Bài 1:
A B C I 1 2
Giải:
Vì t/g ABC đều nên AB = AC = BC = 12 cm
Xét \(\Delta AIB,\Delta AIC\) có:
\(AB=AC\) ( do t/g ABC đều )
\(\widehat{B}=\widehat{C}\) ( do t/g ABC đều )
\(\widehat{I_1}=\widehat{I_2}=90^o\)
\(\Rightarrow\Delta AIB=\Delta AIC\)( c.huyền - g.nhọn )
\(\Rightarrow IB=IC\) ( cạnh t/ứng )
Mà \(BC=12\left(cm\right)\)
\(\Rightarrow IB=IC=6cm\)
Trong t/g AIB, áp dụng định lí Py-ta-go có:
\(BI^2+AI^2=AB^2\)
\(\Rightarrow6^2+AI^2=12^2\)
\(\Rightarrow AI^2=108\)
\(\Rightarrow AI=\sqrt{108}\left(cm\right)\)
Vậy \(AI=\sqrt{108}cm\)
\(\Delta ABC\)vuông tại A
Áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC^2=20^2+15^2=625\)
\(\Rightarrow BC=\sqrt{625}=25\left(cm\right)\)
\(\Delta AHB\)vuông tại H
\(\Rightarrow HA^2+HB^2=AB^2\)
\(\Rightarrow HB^2=AB^2-HA^2=20^2-12^2=256\)
\(\Rightarrow HB=\sqrt{256}=16\left(cm\right)\)
\(\Delta AHC\)vuông tại H
\(\Rightarrow AH^2+CH^2=AC^2\)
\(\Rightarrow CH^2=AC^2-AH^2=15^2-12^2=81\)
\(\Rightarrow CH=\sqrt{81}=9\left(cm\right)\)
A B C H
-Tam giác ABC vuông tại A
Áp dụng định lí Pytago
Ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=\sqrt{625}=25\) (cm)
-Tam giác ABH vuông tại H
Theo Pytago có: \(BH^2+AH^2=AB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\) (cm)
- Tam giác AHC vuông tại H
Theo pytago: \(AH^2+CH^2=AC^2\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\) (cm)
Bài 3 :
B A C 17 16 M
Vì M là trung điểm của AC => AM = MC = 16 : 2 = 8 ( cm )
Ta có : tam giác AMB vuông tại M
=> AB2 = AM2 + BM2 ( định lý Py - ta - go )
=> 172 = 162 + BM2
=> 289 = 256 + BM2
=> BM2 = 289 - 256
=> BM2 = 33
=> BM = căn 33 hoặc BM = căn âm 33 . Vì BM > 0 => BM = căn 33
Vậy BM = căn 33
Bài 4 :
A B C H 12 5 2 0
Ta có tam giác AHB vuông tại H
=> AB2 = AH2 + HB2
=> AB2 = 122 + 52
=> AB2 = 144 + 25
=> AB2 = 169
=> AB = 13 hoặc AB = -13 . Vì AB > 0 => AB = 13 cm
Ta có tam giác AHC vuông tại H
=> AC2 = AH2 + HC2 ( định lý Py - ta - go )
=> 202 = 122 + HC2
=> 400 = 144 + HC2
=> HC2 = 400 - 144
=> HC2 = 256
=> HC = 16 hoặc HC = -16 > Vì HC > 0 => HC = 16 cm
Chu vi tam giác ABC là :
( 16 + 5 ) + 20 + 13 = 51 ( cm )
Vậy chu vi tam giác ABC là : 51 cm
A B C H 5 12 20
Xét \(\Delta ABH\perp H\) có :
\(AB^2=BH^2+AH^2\) (định lí PYTAGO)
=> \(AB^2=5^2+12^2=169\)
=> \(AB=\sqrt{169}=13\left(cm\right)\)
Xét \(\Delta ACH\perp H\) có :
\(HC^2=AC^2-AH^2\) (Định lí PYTAGO)
=> \(HC^2=20^2-12^2\)
=> \(HC^2=256\)
=> \(HC=\sqrt{256}=16\left(cm\right)\)
Ta có : \(BC=BH+HC=5+16=21\left(cm\right)\)
Chu vi của tam giác ABC là :
\(AB+AC+BC=13+20+21=54\left(cm\right)\)
Vậy chu vị của tam giác ABC là : 54cm.
Cho \(\Delta\) nhọn ABC. Kẻ AH vuông với BC.Tính chu vi \(\Delta\)ABC biết, AC = 20cm; AH = 12cm; BH = 5 cm.
Trả lời:
\(\Delta\) ABH vuông tại H, ta có:ACBH20512
AB2 = AH2 + BH2 = 122 + 52 = 169
\(\Rightarrow\) AB = \(\sqrt{169}\) = 13 (cm)
\(\Delta\) AHC vuông tại H, ta có:
HC2 = AC2 - AH2 = 202 - 122 = 256
\(\Rightarrow\) HC= 16 (cm)
Chu vi của \(\Delta\)ABC là:
AB + BC + AC = AB + BH + HC + AC
= 13 + 5 + 16 + 20 = 54 (cm)
Thank