Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)vuông tại A
Áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC^2=20^2+15^2=625\)
\(\Rightarrow BC=\sqrt{625}=25\left(cm\right)\)
\(\Delta AHB\)vuông tại H
\(\Rightarrow HA^2+HB^2=AB^2\)
\(\Rightarrow HB^2=AB^2-HA^2=20^2-12^2=256\)
\(\Rightarrow HB=\sqrt{256}=16\left(cm\right)\)
\(\Delta AHC\)vuông tại H
\(\Rightarrow AH^2+CH^2=AC^2\)
\(\Rightarrow CH^2=AC^2-AH^2=15^2-12^2=81\)
\(\Rightarrow CH=\sqrt{81}=9\left(cm\right)\)
A B C H
-Tam giác ABC vuông tại A
Áp dụng định lí Pytago
Ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=\sqrt{625}=25\) (cm)
-Tam giác ABH vuông tại H
Theo Pytago có: \(BH^2+AH^2=AB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\) (cm)
- Tam giác AHC vuông tại H
Theo pytago: \(AH^2+CH^2=AC^2\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\) (cm)
Bài 1:
B A C I 12
Vì \(\Delta\)ABC đều nên AB = AC = BC = 12 cm
và \(\widehat{ABC}\) = \(\widehat{ACB}\) hay \(\widehat{ABI}\) = \(\widehat{ACI}\)
Xét \(\Delta\)ABI vuông tại I và \(\Delta\)ACI vuông tại I có:
AB = AC (c/m trên)
\(\widehat{ABI}\) = \(\widehat{ACI}\) (c/m trên)
=> \(\Delta\)ABI = \(\Delta\)ACI (ch - gn)
=> BI = CI (2 cạnh t/ư)
mà BI + CI = 12
=> BI = CI = \(\frac{12}{2}\) = 6
Áp dụng định lý pytago vào \(\Delta\)ABI vuông tại I có:
AB2 = AI2 + BI2
=> 122 = AI2 + 62
=> AI2 = 122 - 62
=> AI2 = 108
=> AI = \(\sqrt{108}\)
Vậy AI = \(\sqrt{108}\).
Bài 1:
A B C I 1 2
Giải:
Vì t/g ABC đều nên AB = AC = BC = 12 cm
Xét \(\Delta AIB,\Delta AIC\) có:
\(AB=AC\) ( do t/g ABC đều )
\(\widehat{B}=\widehat{C}\) ( do t/g ABC đều )
\(\widehat{I_1}=\widehat{I_2}=90^o\)
\(\Rightarrow\Delta AIB=\Delta AIC\)( c.huyền - g.nhọn )
\(\Rightarrow IB=IC\) ( cạnh t/ứng )
Mà \(BC=12\left(cm\right)\)
\(\Rightarrow IB=IC=6cm\)
Trong t/g AIB, áp dụng định lí Py-ta-go có:
\(BI^2+AI^2=AB^2\)
\(\Rightarrow6^2+AI^2=12^2\)
\(\Rightarrow AI^2=108\)
\(\Rightarrow AI=\sqrt{108}\left(cm\right)\)
Vậy \(AI=\sqrt{108}cm\)
A B C H
a) Vì góc B bằng góc C (tam giác ABC cân tại A)
Và AB =AC
=> tam giác ABH bằng tam giác ACH (cạnh huyền góc nhọn)
b) Trong tam giác ABC cân tại A có AH là đường cao => AH đồng thời là đường phân giác => AH là p/g góc BAC
c) C/m AH là đường trung tuyến như câu b => HB = HC = 3cm
tam giác ABH vuông tại H => \(AH^2+BH^2=AB^2\) => \(AH^2+3^2=5^2\) =>AH = 4cm
đúng nha
a, xét 2 tam giác ABH và ACH vuông tại H ta có:
AB=AC(gt),góc B=góc C từ đó suy ra nha!
b,trong tam giác cân dg cao vừa là dg phân giác trung trực, trung tuyến luôn nên ta suy ra AH là ............(đcpcm)
c, ta có BH=HC=BC/2=6/2=3
áp dụng đ/lí py-ta-go cho tam giác vuông ABH ta có
AB^2=AH^2+BH^2
suy ra: AH^2=AB^2-BH^2
=5^2- 3^2= 25-9 đến đây dễ lắm lun rồi đó bạn!!
Cho \(\Delta\) nhọn ABC. Kẻ AH vuông với BC.Tính chu vi \(\Delta\)ABC biết, AC = 20cm; AH = 12cm; BH = 5 cm.
Trả lời:
\(\Delta\) ABH vuông tại H, ta có:ACBH20512
AB2 = AH2 + BH2 = 122 + 52 = 169
\(\Rightarrow\) AB = \(\sqrt{169}\) = 13 (cm)
\(\Delta\) AHC vuông tại H, ta có:
HC2 = AC2 - AH2 = 202 - 122 = 256
\(\Rightarrow\) HC= 16 (cm)
Chu vi của \(\Delta\)ABC là:
AB + BC + AC = AB + BH + HC + AC
= 13 + 5 + 16 + 20 = 54 (cm)
a) Ta có: AB2 + AC2 = 202 + 152 = 625
BC2 = 252 = 625
nên AB2 + AC2 = BC2
Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo
b) Áp dụng định lí Pitago trong tam giác vuông ACH được:
HC2 + HA2 = AC2
CH2 = 152 - 122
CH2 = 81
=> CH=9 (cm)
Áp dụng định lí Pitago trong tam giác vuông AHB được:
AH2 + BH2 = AB2
122 + BH2 = 202
=> BH2 = 202 - 122 = 256
=> BH=16 cm
Hình bạn tự kẻ nhé .
a) Ta có AB2+AC2 = 202+152= 625
Lại có BC2 = 252 = 625
=> Tam giác ABC vuông ( Py ta go )
b) Ta có AH là đường cao
=> Tam giác ABH và tam giác ACH vuông tại H
Áp dụng Py ta go vào tam giác vuông ACH ta được :
AC2=CH2+ AH2
=> 152 = CH2 + 122
=> CH2 = 152 - 122 = 81
=> CH = 9 ( cm)
=> BH = BC-CH = 25- 9 = 16 ( cm)
Bài làm
a) Xét tam giác ABM có:
MK là đường trung trực
=> MB = MA ( tính chất đường trung trực )
=> Tam giác ABM cân tại M
b) Vì MK vuông góc AB
CB vuông góc AB
=> MK // CB
=> ^AMK = ^MCB ( đồng vị ). (1)
Vì tam giác ABM cân tại M
Mà MK là trung trực
=> MK là phân giác
=> ^AMK = ^BMK. (2)
Từ (1) và (2) => ^BMK = ^MCB. (3)
Vì tam giác BMK vuông tại K
=> ^BMK + ^MBK = 90°
Vì tam giác ABC vuông tại A
=> ^MBK + ^MBC = 90°
=> ^BMK = ^MBC. (4)
Từ (3) và (4) => ^MBC = ^MCB
bài làm
c) Xét tam giác BIA có:
AH vuông góc với BI
IK vuông góc với AB
Mà AH và IK cắt nhau ở M
=> M là trực tâm
=> BM vuông góc với IA ( đpcm )
d) Xét tam giác HMB và tam giác EMA có:
^MHB = ^MEA = 90°
Cạnh huyền: BM = AM ( cmt )
Góc nhọn: ^HMB = ^EMA ( đối )
=> Tam giác HMB = tam giác EMA ( ch-gn )
=> HM = ME
=> Tam giác MHE cân tại M
=> ^MHE = ^MEH
Xét tam giác MHE có:
^HME + ^MHE + ^MEH = 180°
=> ^HME + 2^MHE = 180°
=> 2^MHE = 180° - ^HME. (5)
Xét tam giác ABM cân tại M có:
^BMA + ^MBA + ^MAB = 180°
=> ^BMA + 2^MAB = 180°
=> 2^MAB = 180° - ^BMA. (6)
Mà ^HME = ^BMA ( đối ). (7)
Từ (5) và (6) và (7) => 2^MHE = 2^MAB
=> ^MHE = ^MAB
Mà hai góc này ở vị trí so le le trong
=> HE // AB
Bài 1:
Giải:
Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Trong t/g ABC vuông tại A, áp dụng định lí Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=15^2=225\)
Đặt \(\frac{AB}{3}=\frac{AC}{4}=k\left(k>0\right)\Rightarrow\left\{\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)
Mà \(AB^2+AC^2=225\)
\(\Rightarrow9k^2+16k^2=225\)
\(\Rightarrow25k^2=225\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=3\)
\(\Rightarrow\left[\begin{matrix}AB=3.3=9\\AC=3.4=12\end{matrix}\right.\)
Vậy AB = 9 cm; AC = 12 cm
2/ áp dụng định lí Py - ta - go vào tam tam giác vuông AHB ta có:
AH2 + BH2 = AB2
=> BH.HC + BH2 = AB2
=> BH( HC + BH ) = AB2
=> BH.BC = AB2 (1)
áp dụng định lí Py - ta - go vào tam giác vuông AHC ta có:
AH2 + HC2 = AC2
=> BH.HC + HC2 = AC2
=> HC( BH + HC ) = AC2
=> HC.BC = AC2 (2)
Từ 1 và 2 ta có:
=> BH.BC + HC.BC = AB2 + AC2
=> BC( BH + HC ) = AB2 + AC2
=> BC.BC = AB2 + AC2
=> BC2 = AB2 + AC2
Theo định lí Py - ta - go đảo
=> \(\Delta ABC\) vuông tại A (đpcm)
A H C C
chụp ảnh kiểu gì thế