\(\Delta ABC\) vuông tại A. Từ O trong tam giác ABC kẻ \(OD\perp...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

a)

Áp dụng định lý Pitago: \(AD^2=AO^2+OD^2=a^2+(\frac{a}{2})^2=\frac{5}{4}a^2\)

\(\Rightarrow AD=\frac{\sqrt{5}a}{2}\)

\(\cos A=\frac{AO}{AD}=\frac{a}{\frac{\sqrt{5}}{2}a}=\frac{2}{\sqrt{5}}\)

\(\cos A=\frac{AC}{AB}\Rightarrow AC=\cos A. AB=\frac{2}{\sqrt{5}}.2a=\frac{4}{\sqrt{5}}a\)

\(BC^2=AB^2-AC^2=(2a)^2-(\frac{4}{\sqrt{5}}a)^2=\frac{4}{5}a^2\Rightarrow BC=\frac{2}{\sqrt{5}}a\)

b)

Xét tam giác vuông tại $C$ là $CAB$ có đường trung tuyến $CO$ ứng với cạnh huyền nên \(CM=AO=OB=\frac{AB}{2}=a\)

Do đó: \(OC=OA=OB=OE=a\) nên 4 điểm $C,A,B,E$ cùng nằm trên đường tròn tâm $O$

22 tháng 7 2019

sao không có hình :<

22 tháng 3 2021

hình bạn tự vẽ nha :

a.Ta có:

ˆAPM=ˆAHM=ˆAQM=90oAPM^=AHM^=AQM^=90o

A,P,H,M,Q→A,P,H,M,Q∈ đường tròn đường kính  AMAM

b.Từ câu a A,P,H,M,Q(O,12AM)→A,P,H,M,Q∈(O,12AM)

OP=OH=OM=OQ→OP=OH=OM=OQ

Mà ΔABCΔABC đều, AHBCˆBAH=ˆHAC=30oAH⊥BC→BAH^=HAC^=30o

ˆHOQ=2ˆHAQ=60o,ˆPOH=2ˆPAH=60o→HOQ^=2HAQ^=60o,POH^=2PAH^=60o

Do OP=OH,OH=OQOP=OH,OH=OQ

ΔOPH,ΔOHQ→ΔOPH,ΔOHQ đều

PH=OP=OQ=QH→PH=OP=OQ=QH

OPHQ→OPHQ là hình thoi

21 tháng 2 2022

a) Có \widehat{APM}=\widehat{AHM}=\widehat{AQM}=90^oAPM=AHM=AQM=90o nên 5 điểm A, P, M, H, Q cùng thuộc đường tròn đường kính AM.
b) Vì AH là đường cao của tam giác đều ABC nên \widehat{BAH}=\widehat{HAC}=30^oBAH=HAC=30o.

Vì A, P, M, H, Q cùng nằm trên đường tròn tâm O nên OP = OH = OQ = OM và \widehat{POH}=2\widehat{PAH}=60^oPOH=2PAH=60o ; \widehat{QOH}=60^oQOH=60o suy ra OPH và OQH là hai tam giác đều, do đó OQHP là hình thoi.

c) Gọi r là bán kính đường tròn ngoại tiếp đa giác APMHQ thì AM = 2r và OPH, OQH là hai tam giác đều cạnh r. Do đó PQ=2.\dfrac{r\sqrt{3}}{2}=AM.\dfrac{\sqrt{3}}{2}\ge AH.\dfrac{\sqrt{3}}{2}PQ=2.2r3=AM.23AH.23

Do đó PQ ngắn nhất khi và chỉ khi M là trung điểm BC.

 
               
 

mik ko bít

I don't now

................................

.............