Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mk sửa xíu"câu c) á,trên nửa... nha chứ bên trên là mk viết sai á"!xl mí bn nha!
Hình bạn tự vẽ
a) Xét tam giác BMA và tam giác CMD , có:
BM=MC ( vì M là trung điểm của BC)
góc BMA = góc CMD( 2 góc đối đỉnh)
AM=MB ( giả thiết )
=> Tam giác BMA = tam giác CMD ( c-g-c )
=> góc BAM = góc CDM ( 2 góc tương ứng )(đpcm)
b) Xét tam giác BMD và tam giác CMA , có:
BM=MC ( vì M là trung điểm của BC)
góc BMD = góc CMA( 2 góc đối đỉnh)
AM=MB ( giả thiết )
=> Tam giác BMD = tam giác CMA ( c-g-c )
=> BD = AC ( 2 cạnh tương ứng ) ( đpcm )
=> góc BDM = góc MAC ( 2 góc tương ứng )
Mà góc BMD và góc MAC ở vị trí sole trong
=> AC // BD ( dấu hiệu nhận biết 2 đường thẳng song song) ( đpcm )
Còn lại dễ bạn tự làm nha mỏi tay quá
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a, xét tam giác AHB và tam giác DBH có : HB chung
góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)
AH = BD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
b, tam giác AHB = tam giác DBH (câu a)
=> góc DHB = góc HBA (đn) mà 2 góc này so le trong
=> HD // AB (đl_
c, câu này dễ tự tính được
P A B C D K 1
Cần cm \(\Delta CAP=\Delta DCB\)
C/M
Gọi K là giao điểm của AC và DB
Ta có:
\(\angle K_1+\angle CDK=90^o\) ( \(\Delta DCK\) vuông tại C) (1)
\(\angle K_1+\angle KCP=90^o\) (2)
Từ 1 và 2 suy ra \(\angle KCP=\angle CDK\) ( cùng phụ với \(\angle K_1\)) (3)
CM tương tự suy ra \(\angle APC=\angle DBC\) ( cùng phụ với \(\angle PCB\)) (4)
TỪ 3 và 4 suy ra \(\angle PAC =\angle BCD\) ( tổng 3 góc của 1 tam giác) ( chỗ này bạn tự tìm hiểu nha! giải ra có 2 dòng thôi)
Xét \(\Delta CAP\) và \(\Delta DCB\)
có\(\hept{\begin{cases}\angle ACP=\angle CDB\left(cmt\right)\\AC=CD\left(gt\right)\\\angle CAP=\angle BCD\left(cmt\right)\end{cases}\Rightarrow\Delta CAP=\Delta DCB\left(g.c.g\right)}\)
\(\Rightarrow AP=BC\) ( 2 cạnh tương ứng)