Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔDBH vuông tại B có
BH chung
AH=BD
Do đó: ΔAHB=ΔDBH
b: Xét tứ giác AHDB có
AH//DB
AH=DB
Do đó: AHDB là hình bình hành
Suy ra: AB//DH
c: \(\widehat{ACB}=35^0\)
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Xét tam giác AHB và tam giác DBH có:
AH=BD (giả thiết)
Góc AHB=góc DBH (=90o)
BH là cạnh chung
=> Tam giác AHB = tam giác DBH (c.g.c)
b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)
Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH
c) Tam giác ABH có: \(\widehat{BAH}+\widehat{AHB}+\widehat{ABH}=180^o\) (tổng 3 góc trong tam giác)
=>\(35^o+90^o+\widehat{ABH}=180^o\Rightarrow\widehat{ABH}=180^o-35^o-90^o=55^o\)
Tam giác ABC có: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^o\)(tổng 3 góc trong tam giác)
=>\(90^o+\widehat{ACB}+55^o=180^o\Rightarrow\widehat{ACB}=180^o-90^o-55^o=35^o\)
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Hình em tự vẽ nha.
a, Xét \(\Delta AHB\)và \(\Delta DBH\)có:
\(AH=BD\left(gt\right)\)
\(\widehat{AHB}=\widehat{DBH}=90^o\)
\(HB\)chung
\(\Rightarrow\Delta AHB=\Delta DBH\left(c-g-c\right)\)
b, Ta có: \(\Delta AHB=\Delta DBH\left(c-g-c\right)\Rightarrow\widehat{ABH}=\widehat{DHB}\)mà 2 góc này ở vị trí so le trong \(\Rightarrow AB//HD\)
c, \(\Delta AHB\)có: \(\widehat{AHB}=90^o\Rightarrow\widehat{BAH}+\widehat{ABH}=90^o\)(2 góc nhọn phụ nhau)
hay \(35^o+\widehat{ABH}=90^o\)
\(\widehat{ABH}=65^o\)
\(\Delta ABC\)có: \(\widehat{BAC}=90^o\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)(2 góc nhọn phụ nhau)
hay \(65^o+\widehat{ACB}=90^o\)
\(\widehat{ACB}=35^o\)
a) Xét ΔAHB và ΔDBH có:
HB chung
AHB = DBH (= 90)
AH = DB (gt)
=> ΔAHB = ΔDBH ( c.g.c )
b) Vì ΔAHB = ΔDBH ( theo câu a)
nên ABH = BHD ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong nên AB // DH
c) Ta có góc ABH + BAH = 90 độ ( tc tg vuông )
=> ABH + 35 = 90
=> ABH = 55 độ hay ABC = 55
Áp dụng tc tổng 3 góc trong 1 tg ta có:
BAC + ABC + BCA = 180
=> 90 + 55 + BCA = 180
=> ACB = 35 độ
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a, xét tam giác AHB và tam giác DBH có : HB chung
góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)
AH = BD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
b, tam giác AHB = tam giác DBH (câu a)
=> góc DHB = góc HBA (đn) mà 2 góc này so le trong
=> HD // AB (đl_
c, câu này dễ tự tính được