\(\Delta ABC\) đều. Trên tia đối của tia BC lấy điểm D , trên tia đối của CB lấy điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E

Bài làm

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)

\(\widehat{ACB}+\widehat{ACE}=180^0\)

Mà \(\widehat{ABC}=\widehat{ACB}\)( tam giác ABC đều )

=> \(\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ABD và tam giác ACE có:

AB = AC ( tam giác ABC đều )

\(\widehat{ABD}=\widehat{ACE}\) ( cmt )

BD = CE ( giả thiết )

=> Tam giác ABD = tam giác ACE ( c.g.c )

=> AD = AE ( hai cạnh tương ứng )

=> Tam giác ADE cân tại A. ( đpcm )

b) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)

hay \(60^0+\widehat{ABD}=180^0\)

=> \(\widehat{ABD}=180^0-60^0=120^0\)

Xét tam giác BAD có:

BA = BD ( cùng bằng BC )

=> Tam giác BAD cân tại B

=> \(\widehat{DAB}=\widehat{ABD}\)( hai góc ở đáy của tam giác cân )

=> \(\widehat{DAB}=\widehat{ABD}=\frac{180^0-120^0}{2}=\frac{60^0}{2}=30^0\)

Vì tam giác ABD = tam giác ACE ( cmt )

=> \(\widehat{ABD}=\widehat{ACE}=120^0\)

Xét tam giác ACE có:

AC = CE ( cùng bằng BC )

=> Tam giác ACE cân tại C

=> \(\widehat{CAE}=\widehat{AEC}\)( hai góc ở đáy của tam giác cân )

=> \(\widehat{CAE}=\widehat{AEC}=\frac{180^0-120^0}{2}=\frac{60^0}{2}=30^0\)

Ta có: \(\widehat{DAE}=\widehat{DAB}+\widehat{BAC}+\widehat{CAE}\)

hay \(\widehat{DAE}=30^0+60^0+30^0\)

=> \(\widehat{DAE}=120^0\)

Vậy \(\widehat{DAE}=120^0\)

# Học tốt #

12 tháng 1 2020

a) cách khác tham khỏa nha

xét \(\Delta ABC\)CÓ HAI CẠNH AB = AC

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow\widehat{B}=\widehat{C}\)

TA CÓ\(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)

\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)

\(\widehat{ABC}=\widehat{AC}B\)

\(\Rightarrow\widehat{DBA}=\widehat{ACE}\)

XÉT \(\Delta DBA\)\(\Delta ECA\)

CB=EC(GT)

\(\widehat{DBA}=\widehat{ACE}\left(CMT\right)\)

BA=CA(GT)

\(\Rightarrow\Delta DBA=\Delta ACE\left(C-G-C\right)\)

\(\Rightarrow AD=AE\)HAI CẠNH TƯƠNG ỨNG

\(\Rightarrow ADE\)CÂN TẠI A

7 tháng 2 2018

B B C C A A D D E E H H K K

a) Do tam giác ABC cân tại A nên \(AB=AC;\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Vậy thì \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{KDC}=\widehat{HEB}\)

Lại có DC = DB + BC = CE + BC = BE

Vậy thì \(\Delta DKC=\Delta EHB\)  (Cạnh huyền góc nhọn)

\(\Rightarrow BH=CK\)

c) Xét hai tam giác vuông ABH và ACK có : 

BH = CK

AC = AC

\(\Rightarrow\Delta BAH=\Delta CAK\)  (Cạnh huyền - cạnh góc vuông)

23 tháng 11 2018

Hình tự vẽ nha 

a) Vì tam giác ABC cân tại A

=> ABC = ACB (1)

Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)

Từ (1) và (2) => ABD = ACE

Xét tam giác ABD và tam giác ACE có :

AB = AC ( gt )

ABD = ACE ( cmt )

BD = CE ( gt )

=> tam giác ABD = tam giác ACE ( c-g-c )

=> D = E

Xét tam giác BHD và tam giác CKE có :

DHB = EKC ( = 900 )

BD = CE ( gt )

D = E ( cmt )

=> tam giác BHD = tam giác CKE ( ch - gn )

=> đpcm

b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )

=> HAB = KAC ( 2 góc tương ứng )

Xét tam giác AHB và tam giác AKC có :

HAB = KAC ( cmt )

AHB = AKC ( = 900 )

AB = AC ( gt )

=> tam giác AHB = tam giác AKC ( ch - gn )

=> đpcm

c) Nối H với K

Xét tam giác ADE cân tại A ( vì AD = AE )

=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)

Xét tam giác AHK cân tại A ( vì AH = AK )

\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)

Từ (1) và (2) => D = AHK

mà 1 góc này ở vị trí đồng vị

=> HK // DE hay HK // BC ( đpcm ) 

Có j lên đây hỏi nha : Group Toán Học

29 tháng 9 2017

Cho tam giác đều ABC,Trên tia đối của tia CB lấy điểm D sao cho CD = CB,Chứng minh tam giác BAD vuông,Vẽ AH CK thứ tự vuông góc với BC AD,Chứng minh tam giác AHC = tam giác AKC,Chứng minh AH = 1/2AD,AC là đường trung trực đoạn thẳng HK,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

k mk với

29 tháng 9 2017

Cho tam giác đều ABC,Trên tia đối của tia CB lấy điểm D sao cho CD = CB,Chứng minh tam giác BAD vuông,Vẽ AH CK thứ tự vuông góc với BC AD,Chứng minh tam giác AHC = tam giác AKC,Chứng minh AH = 1/2AD,AC là đường trung trực đoạn thẳng HK,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

^_^ học tốt

19 tháng 5 2017

A B C D E H K

a) Vì \(\Delta ABC\) cân tại A

=> \(\widehat{B}=\widehat{C}\)

\(\widehat{ABD}+\widehat{ABC}=180^0\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\) (kề bù)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABC\)\(\Delta ACE\) có:

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

DB = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

=> \(\widehat{D}=\widehat{E}\) ( hai góc tương ứng)

Xét \(\Delta DBH\)\(\Delta ECK\) có:

\(\widehat{DHB}=\widehat{CKE}\) ( = 900)

DB = CE (gt)

\(\widehat{D}=\widehat{E}\)(cmt)

Do đó: \(\Delta DBH=\Delta ECK\) (ch -gn)

=> BH = CK (hai cạnh tương ứng)

b) Xét \(\Delta ABH\)\(\Delta ACK\) có:

CK = BH ( cmt )

\(\widehat{AHB}=\widehat{AKC}\left(=90^0\right)\)

AB = AC (gt)

Do đó: \(\Delta ABH=\Delta ACK\) ( cạnh huyền - cạnh góc vuông)

6 tháng 2 2018

a) Vì ∆ABC cân tại A nên góc ABC =góc ACB (tính chất tam giác cân)

Ta có: góc ABC + góc ABD=180o (hai góc kề bù)

góc ACB + góc ACE=180o (hai góc kề bù)

Suy ra: góc ABD = góc ACE

Xét ∆ABD và ∆ACE, ta có:

AB = AC (gt)

góc ABD = góc ACE (chứng minh trên)

BD = CE (gt)

Suy ra: ∆ABD = ∆ACE (c.g.c)

⇒ góc D = góc E (hai góc tương ứng)

Xét hai tam giác vuông BHD và CKE, ta có:

góc BHD =góc CKE=90o

BD = CE (gt)

góc D = gócE (chứng minh trên)

Suy ra: ∆BHD = ∆CKE (cạnh huyền, góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)

Xét tam giác vuông AHB và ACK, ta có:

góc AHB = gócAKC = 90o

AB = AC (gt)

BH = CK (chứng minh trên)

Suy ra: ∆ABH = ∆ACK (cạnh huyền, cạnh góc vuông)



12 tháng 2 2019

bạn tự vẽ hình nhé ì bạn đang cần gấp nên mk cx k vẽ kẻo mất thời gian

12 tháng 2 2019

anh tự vẽ hình :

a, xét tam giác AHB và tam giác AHC có : AH chung

AB = AC do tam giác ABC cân tại A (gt) 

góc AHB = góc AHC do AH | BC (gt)

=> tam giác AHB = tam giác AHC (ch - cgv)

b, tam giác ABC cân tại A (gt) => góc ABC = góc ACB (tc)

góc ABD + góc ABC = 180o (kb)

góc ACE + góc ACB = 180o (kb)

=> góc ABD = góc ACE 

xét tam giác ABD và tam giác ACE có : AB = AC (câu a)

DB = CE (gt)

=> tam giác ABD = tam giác ACE (c - g - c)

=> AD = AE (đn)

=> tam giác ADE cân tại A (đn)

4 tháng 5 2020

a) Vì AH = HD => EH là đg trung tuyến của tg ADE

Khi đó C thuộc đg trung tuyến EH (1)

Do tg ABC cân tại A

mà AH là đg cao của tg ABC

=> AH là đg trung trực của tg ABC

=> BH = CH

=> BH = CH = 1/2 BC

Lại do BC = CE

=> CH = 1/2 CE

hay CE = 2/3 EH (2)

Từ (1); (2) => C là trọng tâm tg ADE.

4 tháng 5 2020

Xét ΔAHBΔAHB và ΔAHCΔAHC có :

HAHA chung

HB=HCHB=HC ( AH là đường trung tuyến của BC )

AB=ACAB=AC ( ΔABCΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ⇒AHB^=AHC^ ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=180oAHB^+AHC^=180o ( hai góc kề bù )

⇒AHBˆ=AHCˆ=180o2=90o⇒AHB^=AHC^=180o2=90o

Xét ΔAHEΔAHE và ΔHEDΔHED có :

HEHE chung

HA=HDHA=HD ( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=90o)AHE^=DHE^(=90o)

Do đó : ΔAHE=ΔDHEΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ⇒AEH^=DEH^ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAEDΔAED ⇒AM⇒AM là đường trung tuyến của DE )

⇒DM=ME⇒DM=ME

Xét ΔHEDΔHED vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DEHM=12DE. Mà 12DE=DM12DE=DM⇒HM=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ⇒MHE^=MEH^

Dễ thấy MEHˆ=HEAˆ(cmt)MEH^=HEA^(cmt) ở cái (*)

⇒MHEˆ=HEAˆ⇒MHE^=HEA^

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AEAE (đpcm)