\(\in\)tia đối của tia BC, E\(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E

Bài làm

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)

\(\widehat{ACB}+\widehat{ACE}=180^0\)

Mà \(\widehat{ABC}=\widehat{ACB}\)( tam giác ABC đều )

=> \(\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ABD và tam giác ACE có:

AB = AC ( tam giác ABC đều )

\(\widehat{ABD}=\widehat{ACE}\) ( cmt )

BD = CE ( giả thiết )

=> Tam giác ABD = tam giác ACE ( c.g.c )

=> AD = AE ( hai cạnh tương ứng )

=> Tam giác ADE cân tại A. ( đpcm )

b) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)

hay \(60^0+\widehat{ABD}=180^0\)

=> \(\widehat{ABD}=180^0-60^0=120^0\)

Xét tam giác BAD có:

BA = BD ( cùng bằng BC )

=> Tam giác BAD cân tại B

=> \(\widehat{DAB}=\widehat{ABD}\)( hai góc ở đáy của tam giác cân )

=> \(\widehat{DAB}=\widehat{ABD}=\frac{180^0-120^0}{2}=\frac{60^0}{2}=30^0\)

Vì tam giác ABD = tam giác ACE ( cmt )

=> \(\widehat{ABD}=\widehat{ACE}=120^0\)

Xét tam giác ACE có:

AC = CE ( cùng bằng BC )

=> Tam giác ACE cân tại C

=> \(\widehat{CAE}=\widehat{AEC}\)( hai góc ở đáy của tam giác cân )

=> \(\widehat{CAE}=\widehat{AEC}=\frac{180^0-120^0}{2}=\frac{60^0}{2}=30^0\)

Ta có: \(\widehat{DAE}=\widehat{DAB}+\widehat{BAC}+\widehat{CAE}\)

hay \(\widehat{DAE}=30^0+60^0+30^0\)

=> \(\widehat{DAE}=120^0\)

Vậy \(\widehat{DAE}=120^0\)

# Học tốt #

12 tháng 1 2020

a) cách khác tham khỏa nha

xét \(\Delta ABC\)CÓ HAI CẠNH AB = AC

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow\widehat{B}=\widehat{C}\)

TA CÓ\(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)

\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)

\(\widehat{ABC}=\widehat{AC}B\)

\(\Rightarrow\widehat{DBA}=\widehat{ACE}\)

XÉT \(\Delta DBA\)\(\Delta ECA\)

CB=EC(GT)

\(\widehat{DBA}=\widehat{ACE}\left(CMT\right)\)

BA=CA(GT)

\(\Rightarrow\Delta DBA=\Delta ACE\left(C-G-C\right)\)

\(\Rightarrow AD=AE\)HAI CẠNH TƯƠNG ỨNG

\(\Rightarrow ADE\)CÂN TẠI A

26 tháng 3 2018

Violympic toán 7Violympic toán 7Chúc bạn học tốt!

25 tháng 2 2018

A B C D E

Ta thấy AB = BD (GT) ; AC=CE (GT)

Mà AB = AC ( do tam  gaics ABC cân tại A)

Nên BD=CE

Ta thấy ^DBA = 180 dộ - ^ABC

           ^ECA = 180 độ - ^ACB

mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA

Xét tam giác ABD và tam giác ACE có: 

              AB = AC

               ^BDA = ^ECA (cmt)

             BD = CE ( cmt )

suy ra tam giác ABD = tam giác ACE (c.g.c)

Suy ra ^D = ^ E ( 2 cạnh tương ứng)

Suy ra tam giac ADE cân tại A

+, ta thấy DE = BD + BC + CE

MÀ BD =AB ( GT ); CE= AC (GT)

Suy ra DE = AB+ BC+AC

b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180

                              32 + ^ABC + ^ ACB =180

                               ^ABC + ^ACB = 180-32=158

Suy ra ^ABC = ^ ACB = 158 :2 = 79

Mà ^ABC là góc ngoài của tam giac ABD cân tại b

Nên ^D=79:2=39,5

Suy ra D =^E= 39,5( tam giác ADE cân)

SUY ra DAC= 180-39,5-39,5=101

19 tháng 5 2017

A B C D K E H

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)

\(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét hai tam giác ABD và ACE có:

\(\widehat{BAD}=\widehat{CAE}\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

Suy ra: BD = CE (hai cạnh tương ứng)

b) Xét hai tam giác BHD và CKE có:

BD = CE (cmt)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))

Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

21 tháng 1 2018

A B C H D E

a,Vì tam giác ABC có \(\widehat{B}=\widehat{C}\)nên\(\Rightarrow\)Tam giác ABC là tam giác cân

\(\Rightarrow AB=AC\)

b,

Xét tam giác ABD và tam giác ACE có

  \(AB=AC\)

\(\widehat{B}=\widehat{C}\)

\(AD=AE\)

\(\Rightarrow\)Tam giác ABD=Tam giác ACE(C-G-C)

c.Xét tam giác ACD và tam giác ABEcó

\(AC=AB\)

\(\widehat{B}=\widehat{C}\)

\(AD=AE\)(vì 2 tam giác ABD=tam giác ACE)

\(\Rightarrow\)Tam giác ACD=Tam giác ABE(c-g-c)

Bạn nhớ viết hết bằng kí hiệu nha

4 tháng 5 2020

a) Vì AH = HD => EH là đg trung tuyến của tg ADE

Khi đó C thuộc đg trung tuyến EH (1)

Do tg ABC cân tại A

mà AH là đg cao của tg ABC

=> AH là đg trung trực của tg ABC

=> BH = CH

=> BH = CH = 1/2 BC

Lại do BC = CE

=> CH = 1/2 CE

hay CE = 2/3 EH (2)

Từ (1); (2) => C là trọng tâm tg ADE.

4 tháng 5 2020

Xét ΔAHBΔAHB và ΔAHCΔAHC có :

HAHA chung

HB=HCHB=HC ( AH là đường trung tuyến của BC )

AB=ACAB=AC ( ΔABCΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ⇒AHB^=AHC^ ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=180oAHB^+AHC^=180o ( hai góc kề bù )

⇒AHBˆ=AHCˆ=180o2=90o⇒AHB^=AHC^=180o2=90o

Xét ΔAHEΔAHE và ΔHEDΔHED có :

HEHE chung

HA=HDHA=HD ( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=90o)AHE^=DHE^(=90o)

Do đó : ΔAHE=ΔDHEΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ⇒AEH^=DEH^ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAEDΔAED ⇒AM⇒AM là đường trung tuyến của DE )

⇒DM=ME⇒DM=ME

Xét ΔHEDΔHED vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DEHM=12DE. Mà 12DE=DM12DE=DM⇒HM=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ⇒MHE^=MEH^

Dễ thấy MEHˆ=HEAˆ(cmt)MEH^=HEA^(cmt) ở cái (*)

⇒MHEˆ=HEAˆ⇒MHE^=HEA^

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AEAE (đpcm)