Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Ta thấy AB = BD (GT) ; AC=CE (GT)
Mà AB = AC ( do tam gaics ABC cân tại A)
Nên BD=CE
Ta thấy ^DBA = 180 dộ - ^ABC
^ECA = 180 độ - ^ACB
mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA
Xét tam giác ABD và tam giác ACE có:
AB = AC
^BDA = ^ECA (cmt)
BD = CE ( cmt )
suy ra tam giác ABD = tam giác ACE (c.g.c)
Suy ra ^D = ^ E ( 2 cạnh tương ứng)
Suy ra tam giac ADE cân tại A
+, ta thấy DE = BD + BC + CE
MÀ BD =AB ( GT ); CE= AC (GT)
Suy ra DE = AB+ BC+AC
b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180
32 + ^ABC + ^ ACB =180
^ABC + ^ACB = 180-32=158
Suy ra ^ABC = ^ ACB = 158 :2 = 79
Mà ^ABC là góc ngoài của tam giac ABD cân tại b
Nên ^D=79:2=39,5
Suy ra D =^E= 39,5( tam giác ADE cân)
SUY ra DAC= 180-39,5-39,5=101
A B C D K E H
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)
Mà \(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)
Do đó: \(\widehat{ABD}=\widehat{ACE}\)
Xét hai tam giác ABD và ACE có:
\(\widehat{BAD}=\widehat{CAE}\) (gt)
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{ABD}=\widehat{ACE}\) (cmt)
Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)
Suy ra: BD = CE (hai cạnh tương ứng)
b) Xét hai tam giác BHD và CKE có:
BD = CE (cmt)
\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))
Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)
Suy ra: BH = CK (hai cạnh tương ứng).
A B C H D E
a,Vì tam giác ABC có \(\widehat{B}=\widehat{C}\)nên\(\Rightarrow\)Tam giác ABC là tam giác cân
\(\Rightarrow AB=AC\)
b,
Xét tam giác ABD và tam giác ACE có
\(AB=AC\)
\(\widehat{B}=\widehat{C}\)
\(AD=AE\)
\(\Rightarrow\)Tam giác ABD=Tam giác ACE(C-G-C)
c.Xét tam giác ACD và tam giác ABEcó
\(AC=AB\)
\(\widehat{B}=\widehat{C}\)
\(AD=AE\)(vì 2 tam giác ABD=tam giác ACE)
\(\Rightarrow\)Tam giác ACD=Tam giác ABE(c-g-c)
Bạn nhớ viết hết bằng kí hiệu nha
a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tg ABC cân tại A
mà AH là đg cao của tg ABC
=> AH là đg trung trực của tg ABC
=> BH = CH
=> BH = CH = 1/2 BC
Lại do BC = CE
=> CH = 1/2 CE
hay CE = 2/3 EH (2)
Từ (1); (2) => C là trọng tâm tg ADE.
Xét ΔAHBΔAHB và ΔAHCΔAHC có :
HAHA chung
HB=HCHB=HC ( AH là đường trung tuyến của BC )
AB=ACAB=AC ( ΔABCΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=180oAHB^+AHC^=180o ( hai góc kề bù )
⇒AHBˆ=AHCˆ=180o2=90o⇒AHB^=AHC^=180o2=90o
Xét ΔAHEΔAHE và ΔHEDΔHED có :
HEHE chung
HA=HDHA=HD ( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=90o)AHE^=DHE^(=90o)
Do đó : ΔAHE=ΔDHEΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ⇒AEH^=DEH^ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAEDΔAED ⇒AM⇒AM là đường trung tuyến của DE )
⇒DM=ME⇒DM=ME
Xét ΔHEDΔHED vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DEHM=12DE. Mà 12DE=DM12DE=DM⇒HM=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ⇒MHE^=MEH^
Dễ thấy MEHˆ=HEAˆ(cmt)MEH^=HEA^(cmt) ở cái (*)
⇒MHEˆ=HEAˆ⇒MHE^=HEA^
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AEAE (đpcm)
A B C D E
Bài làm
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)
\(\widehat{ACB}+\widehat{ACE}=180^0\)
Mà \(\widehat{ABC}=\widehat{ACB}\)( tam giác ABC đều )
=> \(\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
AB = AC ( tam giác ABC đều )
\(\widehat{ABD}=\widehat{ACE}\) ( cmt )
BD = CE ( giả thiết )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( hai cạnh tương ứng )
=> Tam giác ADE cân tại A. ( đpcm )
b) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)
hay \(60^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-60^0=120^0\)
Xét tam giác BAD có:
BA = BD ( cùng bằng BC )
=> Tam giác BAD cân tại B
=> \(\widehat{DAB}=\widehat{ABD}\)( hai góc ở đáy của tam giác cân )
=> \(\widehat{DAB}=\widehat{ABD}=\frac{180^0-120^0}{2}=\frac{60^0}{2}=30^0\)
Vì tam giác ABD = tam giác ACE ( cmt )
=> \(\widehat{ABD}=\widehat{ACE}=120^0\)
Xét tam giác ACE có:
AC = CE ( cùng bằng BC )
=> Tam giác ACE cân tại C
=> \(\widehat{CAE}=\widehat{AEC}\)( hai góc ở đáy của tam giác cân )
=> \(\widehat{CAE}=\widehat{AEC}=\frac{180^0-120^0}{2}=\frac{60^0}{2}=30^0\)
Ta có: \(\widehat{DAE}=\widehat{DAB}+\widehat{BAC}+\widehat{CAE}\)
hay \(\widehat{DAE}=30^0+60^0+30^0\)
=> \(\widehat{DAE}=120^0\)
Vậy \(\widehat{DAE}=120^0\)
# Học tốt #
a) cách khác tham khỏa nha
xét \(\Delta ABC\)CÓ HAI CẠNH AB = AC
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow\widehat{B}=\widehat{C}\)
TA CÓ\(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
MÀ\(\widehat{ABC}=\widehat{AC}B\)
\(\Rightarrow\widehat{DBA}=\widehat{ACE}\)
XÉT \(\Delta DBA\)VÀ\(\Delta ECA\)CÓ
CB=EC(GT)
\(\widehat{DBA}=\widehat{ACE}\left(CMT\right)\)
BA=CA(GT)
\(\Rightarrow\Delta DBA=\Delta ACE\left(C-G-C\right)\)
\(\Rightarrow AD=AE\)HAI CẠNH TƯƠNG ỨNG
\(\Rightarrow ADE\)CÂN TẠI A