Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
Hay \(\widehat{ABD}=\widehat{ACE}\)
Theo định lý Cos ta có
\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)
\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)
Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE
Nên AD = AE hay tam giác ADE cân tại A
b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)
Nên góc KCE = góc DBH
Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)
Xét tam giác HBA và tam giác ACK vuông có :
+ góc HBA = góc KCA
+ AB = AC
\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)
c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)
\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)
\(\widehat{HBA}=\widehat{ACK}\)
\(\widehat{ABC}=\widehat{ACB}\)
Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O
d) Xét tam giác AMB và tam giác AMC
+ AM chung
+ BM = MC (gt)
+ AB = AC (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c
Và hai góc BAM = góc CAM
Hay AM là tia phân giác của góc BAC
Xét tam giác AOB và tam giác ACO
+ AB = AC (gt)
+ OB = OC (cmt )
+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)
Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c
Và góc BAO = góc CAO
Hay AO là phân giác của góc BAC
Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)
A B C E D O
a.Xét\(\Delta ADB\)và\(\Delta AEC\)có:
\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)
\(\widehat{A}\)chung
AB=AC(gt)
=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)
b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)
Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)
=> \(\widehat{OBC}=\widehat{OCB}\)
=> Tam giác BOC cân tại O
câu b sai đề thì phải bạn ạ
còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được
A B C H K P M
a) xét △ABM và △ ACM có
AB=AC ( △ABC cân tại A)
\(\widehat{B}=\widehat{C}\)( △ABC cân tại A)
BM=MC (gt)
=> △ABM = △ ACM (c.g.c)(đpcm)
b) xét △HBM và △ HCM có
\(\widehat{H}=\widehat{K}\left(=90^0\right)\)
BM=MC
\(\widehat{B}=\widehat{C}\) ( △ABC cân tại A)
=> △HBM = △ HCM (ch-gn)
=> HB=HC (2 cạnh tương ứng ) (đpcm)
c) +vì △HBM = △ HCM ( theo b)
=> \(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng )
VÌ + BP ⊥ AC (gt)
+ MK ⊥ AC (gt)
=> BP // MK (qh từ vuông góc đến // )
=> \(\widehat{BIM}=\widehat{KIM}\) (slt)
ta có
\(\widehat{BIM}+\widehat{HMB}+\widehat{IBM}=180^0\)(đl tổng 3 góc trong △)
\(\widehat{HMB}+\widehat{IMK}+\widehat{KMC}=180^0\)(kề bù )
MÀ \(\widehat{HMB}\) chung
\(\widehat{BIM}=\widehat{IMK}\left(cmt\right)\)
=> \(\widehat{IBM}=\widehat{KMC}\)
MÀ \(\widehat{KMC}=\widehat{IMB}\) (cmt)
=> \(\widehat{IBM}=\widehat{IMB}\)
=> △ IBM cân tại I (đpcm)