Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=15(cm)
a: góc B=90-40=50 độ
Xét ΔABC vuông tại A có \(AB=BC\cdot sin40^0=6.43\left(cm\right)\)
=>AC=7,66(cm)
b: \(BD\cdot EC\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)
\(BC=MH+HP=10\)
Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)
b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)
\(EF=EQ+QF=17\)
Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
trong ΔAKB vuông tại K,
ta có: cgv = ch. cos(kề)
hay: BK = AB . cos B
BK = 6 . cos 42 0 ∼4,4 cm
lại có: cgv = ch . sin (đối)
AK = AB . sin B
AK = 6 . sin 420 ∼4cm
Áp dụng định lí Py - ta - go vào ΔAKC vuông tại K, ta có:
AC2 = AK2 + CK2
hay AC2 = 42 + 62 = 52
=> AC = \(\sqrt{52}\) ∼ 7,2 cm
\(AH=\sqrt{25\cdot64}=5\cdot8=40\left(cm\right)\)
BC=BH+CH=89cm
Xét ΔABH vuông tại H có tan ABH=AH/HB=40/25=8/5
nên góc ABH=58 độ
=>góc ACB=32 độ
góc BAH=góc ACB=32 độ
góc CAH=góc ABH=58 độ
Câu 2:
Từ B, kẻ đường thẳng vuông góc với BC cắt AC tại M.
Từ giả thiết, ta có:
\(\cdot\) AH // BM (do cùng _I_ BC)
\(\cdot\) H là trung điểm của BC (\(\Delta ABC\) cân tại A có AH là đường cao)
Suy ra AH là đường trung bình của \(\Delta BMC\)
\(\Rightarrow BM=2AH\)
Xét \(\Delta BMC\) vuông tại B có BK là đường cao
\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BM^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\) (đpcm)
Câu 1:
Xét \(\Delta ABC\) vuông tại A có AH là đường cao
\(\Rightarrow AB^2=BH\times BC\)
Xét \(\Delta HBA\) vuông tại H có HE là đường cao
\(\Rightarrow BH^2=BE\times AB\)
\(\Rightarrow BE^2=\dfrac{BH^4}{AB^2}=\dfrac{BH^4}{BH\times BC}=\dfrac{BH^3}{BC}\)
Chứng minh tương tự, ta có: \(CF^2=\dfrac{CH^3}{BC}\)
Suy ra \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\dfrac{BH}{\sqrt[3]{BC}}+\dfrac{CH}{\sqrt[3]{BC}}=\dfrac{BH+CH}{\sqrt[3]{a}}=\dfrac{a}{\sqrt[3]{a}}=\left(\sqrt[3]{a}\right)^2\)