Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2

A B C a b c
Có \(\sin\widehat{A}=\frac{h_c}{b}=\frac{h_b}{c}=\frac{h_c-h_b}{b-c}=\frac{h_b-h_c}{\frac{a}{k}}=\frac{k\left(h_b-h_c\right)}{a}\) (1)
Lại có : \(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}}\)\(\Rightarrow\)\(k\left(\sin\widehat{B}-\sin\widehat{C}\right)=\frac{k\left(h_c-h_b\right)}{a}\) (2)
(1) (2) ...
\(\sin\widehat{B}=\frac{h_a}{c}\)\(;\)\(\sin\widehat{C}=\frac{h_a}{b}\) (1)
\(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}\Leftrightarrow\hept{\begin{cases}h_c=\sin\widehat{B}.a\\h_b=\sin\widehat{C}.a\end{cases}}}\)\(\Rightarrow\)\(k\left(\frac{1}{h_b}-\frac{1}{h_c}\right)=\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)\) (2)
Thay (1) vào (2) ta được \(\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)=\frac{k}{a}.\left(\frac{b}{h_a}-\frac{c}{h_a}\right)=\frac{k}{a}.\frac{\frac{a}{k}}{h_a}=\frac{1}{h_a}\)
đpcm

A B C M H
Kẻ đường cao AH ; Vì AB < AC => BH < HC=> H thuộc BM
Ta có: \(\sin\alpha=\frac{AB}{BC};\cos\alpha=\frac{AC}{BC};\sin\beta=\frac{AH}{AM}\)
=> \(\left(\sin\alpha+\cos\alpha\right)^2=\left(\frac{AB}{BC}+\frac{AC}{BC}\right)^2=\frac{AB^2}{BC^2}+\frac{AC^2}{BC^2}+\frac{2AB.AC}{BC^2}=1+\frac{2AB.AC}{BC^2}\)
Mà theo hệ thức lượng: \(AB^2=BC.BH;AC^2=CB.CH\)
=> \(\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=\frac{2BH.CH}{AB.AC}=\frac{2AH^2}{AB.AC}\)
Ta cần chứng minh: \(\frac{2AH^2}{AB.AC}=\frac{AH}{AM}\Leftrightarrow2AH.AM=AB.AC\Leftrightarrow AH.BC=AB.AC\)đúng
Vậy \(1+\frac{2AB.AC}{BC^2}=1+\frac{AH}{AM}\)
=> Có điều cần phải cm
Lời giải:
Áp dụng định lý Pitago ta có:
\(\sin A=\frac{BK}{AB}=\frac{BK}{BC}.\frac{BC^2}{BC.AB}=\frac{BK}{KC}.\frac{BK^2+KC^2}{BC.AB}\)
\(=\frac{BK}{KC}.\frac{AB^2-AK^2+KC^2}{BC.AB}=\frac{BK}{KC}.\frac{AC^2-AK^2+KC^2}{BC.AB}\)
\(=\frac{BK}{KC}.\frac{(AK+KC)^2-AK^2+KC^2}{BC.AB}\)
\(=\frac{BK}{KC}.\frac{2KC^2+2AK.KC}{BC.AC}=\frac{BK}{KC}.\frac{2KC.AC}{BC.AC}=2\frac{BK}{KC}.\frac{KC}{BC}\)
\(=2\cos \widehat{KBC}.\sin \widehat{KBC}\)
\(\sin \widehat{KBC}=\sqrt{\frac{2}{3}}\Rightarrow \cos \widehat{KBC}=\sqrt{1-\sin ^2\widehat{KBC}}=\sqrt{1-\frac{2}{3}}=\frac{1}{\sqrt{3}}\)
Do đó: \(\sin A=2.\frac{1}{\sqrt{3}}.\sqrt{\frac{2}{3}}=\frac{2\sqrt{2}}{3}\)
Hình vẽ: