Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n=4\) bđt \(\Leftrightarrow\)\(\frac{x_1}{x_4+x_2}+\frac{x_2}{x_1+x_3}+\frac{x_3}{x_2+x_4}+\frac{x_4}{x_3+x_1}\ge2\)
\(\Leftrightarrow\)\(\frac{x_1^2}{x_4x_1+x_1x_2}+\frac{x_2^2}{x_1x_2+x_2x_3}+\frac{x_3^2}{x_2x_3+x_3x_4}+\frac{x_4^2}{x_3x_4+x_4x_1}\ge2\) (1)
\(VT_{\left(1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2\left(x_1x_2+x_2x_3+x_3x_4+x_4x_1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2.\frac{\left(x_1+x_2+x_3+x_4\right)^2}{4}}=2\)
Giả sử bđt đúng đến n=k hay \(\frac{x_1}{x_k+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_1}\ge2\)
\(\Leftrightarrow\)\(\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}\ge2-\frac{x_1}{x_k+x_2}-\frac{x_k}{x_{k-1}+x_1}\)
Với n=k+1, cần cm \(\frac{x_1}{x_{k+1}+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_{k+1}}+\frac{x_{k+1}}{x_k+x_1}\ge2\)
hay \(\frac{x_1}{x_{k+1}+x_2}-\frac{x_1}{x_k+x_2}+\frac{x_k}{x_{k-1}+x_{k+1}}-\frac{x_k}{x_{k-1}+x_1}+\frac{x_{k+1}}{x_k+x_1}\ge0\) (2)
giả sử \(x_k=max\left\{a_1;a_2;...;a_{k+1}\right\}\)
\(VT_{\left(2\right)}=\frac{x_1\left(x_k-x_{k+1}\right)}{\left(x_k+x_2\right)\left(x_{k+1}+x_2\right)}+\frac{x_k\left(x_1-x_{k+1}\right)}{\left(x_{k-1}+x_1\right)\left(x_{k-1}+x_{k+1}\right)}+\frac{x_{k+1}}{x_k+x_1}>0\)
nhầm, chỗ giả sử là \(x_{k+1}=min\left\{x_1;x_2;...;x_{k+1}\right\}\)
1. Với D là biến đếm, ta có quy trình bấm phím liên tục:
D=D+1:A=DxB-C-D:C=B:B=A
CALC giá trị C=1; B=2; D=2 bấm "=" liên tục
Kết quả: x12 = 5245546; x13 = 67751587; x14 = 943276658
2. Dùng máy tính tính được x=27; y=11; z=19 => A=?
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
a) Ta có số hạng thứ x là \(\frac{x}{\left(x+1\right)^2}\)( cái này bạn tự nhìn quy luật của nó rùi CM nhé)
\(\Rightarrow\)Số hạng thứ 35 là khi x=35 và bằng: \(\frac{35}{\left(35+1\right)^2}=\frac{35}{1296}\)
b) Gọi \(Q\left(x\right)=\frac{x}{\left(x+1\right)^2}+\frac{\left(x+1\right)}{\left(x+1+1\right)^2}+....\)
Ta có: \(Q\left(1\right)=\frac{1}{\left(1+1\right)^2}\)
\(Q\left(2\right)=Q\left(1\right)+\frac{2}{\left(2+1\right)^2}\)
\(Q\left(3\right)=Q\left(2\right)+\frac{3}{\left(3+1\right)^2}\)...........
\(\Rightarrow Q\left(x\right)=Q\left(x-1\right)+\frac{x}{\left(x+1\right)^2}\)
\(\Rightarrow\)Ta có quy trình sau: \(X=X+1:A=A+\frac{X}{\left(X+1\right)^2}\) \(CALC\) \(1=\frac{1}{4}===....\)Ấn đến khi X=n ta tíh đc Q(n) (cái này mk ghi quy trình tắt thui bạn tự ghi các phím vào nhé)
Áp dụng quy trình trên ta tíh đc \(Q\left(30\right)\approx2,4140544951\)