K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

a) Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔBHA=ΔBHD(hai cạnh góc vuông)

b) Xét ΔHBA vuông tại H và ΔHKD vuông tại H có

HB=HK(gt)

HA=HD(gt)

Do đó: ΔHBA=ΔHKD(hai cạnh góc vuông)

\(\widehat{HBA}=\widehat{HKD}\)(hai góc tương ứng)

mà \(\widehat{HBA}\) và \(\widehat{HKD}\) là hai góc ở vị trí so le trong

nên AB//DK(Dấu hiệu nhận biết hai đường thắng song song)

c) Ta có: AB//DK(cmt)

AB⊥AC(ΔABC vuông tại A)

Do đó: DK⊥AC

Xét ΔDAK có 

KH là đường cao ứng với cạnh AD(KH⊥AD)

AC là đường cao ứng với cạnh DK(AC⊥DK)

KH\(\cap\)AC={C}

Do đó: C là trực tâm của ΔDAK(Tính chất ba đường cao của tam giác)

⇒DC⊥AK(đpcm)

1: Xét ΔAHK vuông tại H và ΔDHB vuông tại H có

HA=HD

HK=HB

Do đó:ΔAHK=ΔDHB

2: Xét tứ giác AKDB có

H là trung điểm của AD

H là trung điểm của BK

Do đo: AKDB là hình bình hành

Suy ra: AK//BD

3: Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến

Do đo: ΔBAD cân tại B

=>BA=BD

b: Xét tứ giác ABDE có

H là trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

=>DE vuông góc AC

c: Xét ΔCAD có

CH,DE là đường cao

CH cắt DE tại E

=>E là trực tâm