Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)
=>AM=1/2*BC=BM=CM
xét tam giácBMA và tam giác DMC có :
AM=MD(gt)
góc BMA=góc DMC (đ đ)
BM=MC(gt)
=> 2 tam giác đó bằng nhau(c-g-c)
=>ACB=ADC(2GTU)
AB=DC(2ctu)
ta có BM+CM =BC, AM+MD=AD
mà BM=CM, AM=MD
và AM=BM=CM
=> BC=AD
xét tam giác BAC và tam giác DCA có :
BA=DC (cmt)
AC là cạnh chung
BC=AD (cmt)
=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Vì M là trung điểm của BC
=> BM = CM
Xét tam giác ABM và tam giác DCM có:
AM = DM(gt)
góc AMB = DMC (đối đỉnh)
VM = CM (cmt)
=> đpcm
b) Xét tam giác BDM và tam giác CMA có:
BM = CM (cmt)
góc BMD = CMA (đối đỉnh)
DM = AM (gt)
=> tam giác BDM = tam giác CMA (cgc)
=> BD = AC( 2 cạnh tương ứng)
góc ACM = góc DBM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong của 2 đường thẳng BD và AC
=> BD//AC
a b c m d 1 2 3 4 e f
Xét T/G ABC và DCM
CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)
Có T/G ABC=DCM -> Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC
C) Xét T/G BFM và CEM có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) -> BFM=CEM(g.c.g)
-> ME=MF -> M là trung điểm EF
A B C M D E F
a, Xét t/g ABM và t/g DCM có:
AM=DM(gt)
BM=CM(gt)
góc AMB=góc DMC (đối đỉnh)
=>t/g ABM=t/g DCM (c.g.c)
b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)
Mà 2 góc này là cặp góc so le trong
=> AB//DC
c, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
BM=CN(gt)
góc BME = góc CMF (đối đỉnh)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>EM=FM (2 cạnh t/ứ)
=>M là trung điểm của EF
a) Xét ∆ vuông ABH ta có :
BH < AB ( trong ∆ vuông cạnh góc vuông nhỏ hơn cạnh huyền)
Xét ∆ vuông AHC ta có :
HC < AC (...)
=> BH < AC
b) Vì AH = HE
=> H là trung điểm AE
Mà BHA = 90°
=> BH vuông góc với AE
=> BH là trung trực ∆BAE
=> ∆BAE cân tại B
a) Đường xiên AB bé hơn đường xiên AC nên hình chiếu của AB trên BC bé hơn hình chiếu của AC trên BC
\(\Rightarrow BH< CH\left(đpcm\right)\)
b) Hai tam giác vuông ABH và EBH có:
BH: cạnh chung
HE = HA (gt)
Suy ra \(\Delta ABH=\Delta EBH\left(2cgv\right)\)
\(\Rightarrow AB=EB\)(hai cạnh tương ứng)
\(\Rightarrow\Delta ABE\)cân tại B ( có hai cạnh bên bằng nhau)