Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có DE//BC nên: \(\frac{DA}{DB}=\frac{AE}{CE}\left(1\right)\)
Lại có AB//CG nên: \(\frac{DE}{EG}=\frac{AE}{CE}\left(2\right)\)
Từ (1) và (2) có: ĐPCM
b/Có DE//BC nên
\(\frac{HC}{HE}=\frac{BH}{HG}\left(3\right)\)
Có AB//CG nên
\(\frac{HA}{HC}=\frac{BH}{HG}\left(4\right)\)
Từ (3) và (4) có: \(\frac{HC}{HE}=\frac{HA}{HC}\RightarrowĐPCM\)
c/Ta có: \(\frac{HI}{AB}=\frac{CI}{BC}\left(5\right)\)
Và \(\frac{HI}{CG}=\frac{BI}{BC}\left(6\right)\)
Lấy (5) cộng (6) đước: \(\frac{HI}{AB}+\frac{HI}{CG}=1\Rightarrow\frac{1}{AB}+\frac{1}{CG}=\frac{1}{HI}\)
Hình vẽ:
x A B C K E D H 1 2 1 2
~~~~
a/ vì: \(\left\{{}\begin{matrix}DE\left|\right|BC\\Cx\left|\right|AB\end{matrix}\right.\) (gt) => \(\left\{{}\begin{matrix}DK\left|\right|BC\\CK\left|\right|BD\end{matrix}\right.\)
=> DKCB là hbh
=> \(\widehat{ABC}=\widehat{CKE}\)
Có: \(\widehat{E_1}=\widehat{E_2}\) (đối đỉnh)
Mặt khác: \(\widehat{E_2}=\widehat{C_1}\) (đồng vị)
=> \(\widehat{C_1}=\widehat{E_1}\)
Xét ΔABC và ΔCEK có:
\(\widehat{ABC}=\widehat{CKE}\) (cmt)
\(\widehat{C_1}=\widehat{E_1}\left(cmt\right)\)
=> ΔABC ~ ΔCKE (g.g) (đpcm)
b/ Xét ΔBCH và ΔKEH có:
\(\widehat{BHC}=\widehat{KHE}\) (đối đỉnh)
\(\widehat{C_1}=\widehat{E_1}\) (đã cm)
=> ΔBCH ~ ΔKEH (g.g)
=> \(\dfrac{BC}{KE}=\dfrac{HC}{HE}\) => BC . HE = HC . KE (đpcm)
c/ 0 biet lam
Hih e tự vẽ nha:
a) Vì DM//BE nên tứ giác BDME là hình thang.
Lại có :\(\widehat{B}=\widehat{C}=60\)( tam giác ABC đều)
và \(\widehat{BEM}=\widehat{C}=60\)(Vì DE//AC và ACB=90 độ)
=>\(\widehat{BEM}=\widehat{B}=60\)
=>Tứ giác BDME là htc.
T/tự cho các hình còn lại.
b)Xét tam giác BDM và EMD:
BD=ME( BDME là htc)
góc BDM=góc EMD(Vì DM//BE và góc BEM=góc B=60 độ)
DM là cah chug
=> tg BDM=tg EMD (cgc)
=>BM=DE
C/m t/tự đối vói các tg AFD=AMF; tg CEM=tg FME
=> AM=DF;CM=EF
=>BM+AM+CM=DE+DF+EF= Chu vi của tam giác DEF
c) Ở câu a/ ta đã có góc B= góc E=60 nên suy ra đc các góc còn lại của htc BDME bằng 120 độ
T/tự cho 2 htc còn lại suy ra đc cả 3 góc đều =120 độ nên chúng = nhau
M A B C D E F
a, Chứng minh các tứ giác BDME,CFME,ADMF là các hình hang cân.
Ta có : MD//BC\(\Rightarrow\)BDME là hình thang cân .(1)
ME//AC\(\Rightarrow\widehat{MEB}=\widehat{ACB}\)(hai góc đồng vị )
mà \(\widehat{ACB}=\widehat{ABC}=60^o\)(do tam giác ABC đều)
\(\Rightarrow\widehat{MEB}=\widehat{ABC}=60^o\)(2)
Từ (1) và (2) => tứ giác BDME là hình thang cân.
Chứng minh tương tự ta cũng có : tứ giác CFME và ADMF là các hình thang cân.
b,Chứng minh chu vi của tam giác DEF bằng tổng các khoảng cách từ M đến các đỉnh của tam giác ABC . \(\left(P_{DME}=MB+MA+MC\right)\)
Ta có : \(P_{DEF}=DE+DF+EF\)
Lại có tứ giác BDME là hình thang cân (cmt) => DE = MB.
tứ giác CFME là hình thang cân (cmt)=> MC=EF
tứ giác DMF là hình thang cân (cmt)=> MA =DF.
\(\Rightarrow P_{DEF}=MA+MB+MC\)
=> đpcm.
c,Chứng minh \(\widehat{DME}=\widehat{DMF}=\widehat{EMF}\)
Trong hình thang cân BDME có : \(\widehat{DBE}=60^o\)
mà \(\widehat{DME}+\widehat{DBE}=180^o\Rightarrow\widehat{DME}=180^o-\widehat{DBE}=180^o-60^o=120^o\)
Chứng minh tương tự ta có : \(\widehat{DMF}=120^o;\widehat{EMF}=120^o\)
=>\(\widehat{DME}=\widehat{DMF}=\widehat{EMF}=120^o\)(đpcm)
Mình giải chi tiết rùi đấy nhé nếu có j hk hiểu cứ nhắn tin cho mk mk sẽ giải thích cho nhé.
Nên nhớ hình vẽ chỉ mang tính chất minh họa . Mình vẽ hình cho mấy bạn nhìn vô cho dể hiểu thôi chứ chưa chuẩn lắm đâu mấy bạn tự vẽ hình cho đẹp nhé ai thấy hay thì k cho mk nhé . CẢM ƠN NHIỀU .
a) Xét tứ giác AEDF có DE song song và bằng AF nên AEDF là hình bình hành (Dấu hiệu nhận biết).
Vậy thì AE = FD (tính chất hình bình hành)
b) Do AEDF là hình bình hành nên hai đường chéo AD và EF cắt nhau tại trung điểm mỗi đường.
Theo đề bài thì I là trung điểm AD nên I cũng là trung điểm EF.
Vậy E đối xứng với F qua I.