Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu trả lời tại đây
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m.+Qua+G+v%E1%BA%BD+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+d+c%E1%BA%AFt+hai+c%E1%BA%A1nh+AB+v%C3%A0+AC+t%E1%BA%A1i+D+v%C3%A0+E.+Ch%E1%BB%A9ng+minh:+AB/AD=AC/AE=3&id=516183
a: Xét ΔMAB có ME là phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)
Xét ΔAMC có MD là phân giác
nên \(\dfrac{AD}{DC}=\dfrac{AM}{MC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
Xét ΔABC có \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
nên ED//BC
b: Xét ΔABM có EI//BM
nên \(\dfrac{EI}{BM}=\dfrac{AI}{AM}\left(3\right)\)
Xét ΔAMC có ID//MC
nên \(\dfrac{ID}{MC}=\dfrac{AI}{AM}\left(4\right)\)
Từ (3) và (4) suy ra \(\dfrac{EI}{BM}=\dfrac{ID}{MC}\)
mà BM=MC
nên EI=ID
Ta có: ID//MC
=>\(\widehat{IDM}=\widehat{MDC}\)(hai góc so le trong)
mà \(\widehat{MDC}=\widehat{IMD}\)(MD là phân giác của góc IMC)
nên \(\widehat{IDM}=\widehat{IMD}\)
=>IM=ID
Gọi D là trung điểm BC, lần lượt kẻ BP và CQ song song MN
\(\Rightarrow AG=\frac{2}{3}AD\)
\(\left\{{}\begin{matrix}\widehat{QCD}=\widehat{PBD}\left(slt\right)\\BD=DC\left(gt\right)\\\widehat{CDQ}=\widehat{PDQ}\left(dd\right)\end{matrix}\right.\) \(\Rightarrow\Delta CDQ=\Delta BDP\Rightarrow DQ=DP\)
\(MG//BP\Rightarrow\frac{AB}{AM}=\frac{AP}{AG}=\frac{AD+DP}{AG}\)
\(GN//CQ\Rightarrow\frac{AC}{AN}=\frac{AQ}{AG}=\frac{AD-DQ}{AG}\)
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AD+DP+AD-DQ}{AG}=\frac{2AD}{AG}=\frac{2AD}{\frac{2}{3}AD}=3\)