Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia sử AB < AC
Kẻ BM,CN // DE , trung tuyến AF
Tam giác BMF = tam giác CNF ( g.c.g)
=> MF = NF
=> AB/AD = AM/AG ; AC/AE = AN/AG
=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )
=> ĐPCM
Tk mk nha
câu trả lời tại đây
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m.+Qua+G+v%E1%BA%BD+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+d+c%E1%BA%AFt+hai+c%E1%BA%A1nh+AB+v%C3%A0+AC+t%E1%BA%A1i+D+v%C3%A0+E.+Ch%E1%BB%A9ng+minh:+AB/AD=AC/AE=3&id=516183
A B C G M N P Q D
Gọi D là trung điểm BC, lần lượt kẻ BP và CQ song song MN
\(\Rightarrow AG=\frac{2}{3}AD\)
\(\left\{{}\begin{matrix}\widehat{QCD}=\widehat{PBD}\left(slt\right)\\BD=DC\left(gt\right)\\\widehat{CDQ}=\widehat{PDQ}\left(dd\right)\end{matrix}\right.\) \(\Rightarrow\Delta CDQ=\Delta BDP\Rightarrow DQ=DP\)
\(MG//BP\Rightarrow\frac{AB}{AM}=\frac{AP}{AG}=\frac{AD+DP}{AG}\)
\(GN//CQ\Rightarrow\frac{AC}{AN}=\frac{AQ}{AG}=\frac{AD-DQ}{AG}\)
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AD+DP+AD-DQ}{AG}=\frac{2AD}{AG}=\frac{2AD}{\frac{2}{3}AD}=3\)
A B C D F O E K I
a)
Xét tam giác ABF và tam giác ACB có:
BAC chung
ABF = ACB (gt)
=> Tam giác ABF ~ Tam giác ACB (g - g)
=> \(\dfrac{\text{AF}}{AB}=\dfrac{AB}{AC}\)
=> \(\dfrac{\text{AF}}{4}=\dfrac{4}{8}\)
=> AF = 2 (cm)
Ta có:
AF + FC = AC
2 + FC = 8
FC = 6 (cm)
b)
D là trung điểm của BC (AD là đường trung tuyến của tam giác ABC)
=> \(DC=\dfrac{1}{2}BC\)
Kẻ đường cao AH (H \(\in\) BC)
Ta có: \(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{\dfrac{1}{2}\times AH\times AB}{\dfrac{1}{2}\times AH\times DC}=\dfrac{AB}{\dfrac{1}{2}AB}=2\)
=> SABC = 2SADC
c)
Tam giác CKA có OF // KA (gt) nên theo định lý Talet
=> \(\dfrac{FC}{FA}=\dfrac{OC}{OK}\left(1\right)\)
Tam giác OCI có KA // CI (gt) nên theo hệ quả của định lý Talet
=> \(\dfrac{OC}{OK}=\dfrac{CI}{KA}\left(2\right)\)
(1) và (2)
=> \(\dfrac{FC}{FA}=\dfrac{CI}{KA}\)
d)
Tam giác DCI có CI // BO nên theo hệ quả của định lý Talet
=> \(\dfrac{DB}{DC}=\dfrac{BO}{CI}\)
Tam giác EBO có AK // BI nên theo hệ quả của định lý Talet
=> \(\dfrac{EA}{EB}=\dfrac{AK}{BO}\)
Ta có:
\(\dfrac{DB}{DC}\times\dfrac{EA}{EB}\times\dfrac{FC}{FA}=\dfrac{BO}{CI}\times\dfrac{AK}{BO}\times\dfrac{CI}{KA}=1\)