Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: = 2 = 2.60o = 120o (1)
(góc nội tiếp và góc ở tâm cùng chắn một cung)
và = (đối đỉnh)
mà = 180o - = 180o - 60o = 120o
nên = 120o (2)
= +
= 60o + = 60o+ 60o
(sử dụng góc ngoài của tam giác)
Do đó = 120o
Từ (1), (2), (3) ta thấy các điểm O, H, I cùng nằm trên các cung chứa góc 120o dựng trên đoạn thẳng BC. Nói cách khác, năm điểm B, C, O, H, I cùng thuộc một đường tròn
Ta có: \(\widehat{BOC}\) = 2\(\widehat{BAC}\) = 2.60o = 120o (1)
(góc nội tiếp và góc ở tâm cùng chắn một cung)
và \(\widehat{BHC}\) = \(\widehat{B'HC'}\) (đối đỉnh)
mà \(\widehat{B'HC'}\) = 180o - \(\widehat{A}\) = 180o - 60o = 120o
nên \(\widehat{BHC}\) = 120o (2)
\(\widehat{BIC}\) = \(\widehat{A}\) + \(\dfrac{\widehat{B}+\widehat{C}}{2}\)
= 60o + \(\dfrac{180^0-60^0}{2}\) = 60o+ 60o
(sử dụng góc ngoài của tam giác)
Do đó \(\widehat{BIC}\) = 120o
Từ (1), (2), (3) ta thấy các điểm O, H, I cùng nằm trên các cung chứa góc 120o dựng trên đoạn thẳng BC. Nói cách khác, năm điểm B, C, O, H, I cùng thuộc một đường tròn
Cho đường tròn tâm OO đường kính MNMN và AA là một điểm trên đường tròn (O)(O), (AA khác MM và AA khác NN). Lấy một điểm II trên đoạn thẳng ONON (II khác OO và II khác NN). Qua II kẻ đường thẳng (d)(d) vuông góc với MNMN. Gọi PP, QQ lần lượt là giao điểm của AMAM, ANAN với đường thẳng (d)(d). Gọi KK là điểm đối xứng của NN qua điểm II. Chứng minh góc PMK = IQN\widehat{PMK}=\widehat{IQN}
và tứ giác MPQKMPQK nội tiếp đường tròn.
Xét 2 tam giác AMN và IQN có :
góc A= goc QIN= 90 (gt)
=> goc M= IQN= 90 - goc N (đpcm)
Xet 2 tam giác IQK và IQN có:
IQ chung
vì K là điểm đối xứng của NN qua điểm II
=> IK =IN
góc QIK = QIN=90
=> 2 tam giác IQK = IQN (c.g.c)
=> góc IQK=IQN=PQA=PMK
trong đó góc PQK + IQN = 180
=> góc PQK + PMK = 180
=> đpcm
a) AM là đường phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)\(\Rightarrow\widebat{BM}=\widebat{CM}\)
=> M là điểm chính giữa cung BC
=> OM _|_ BC (đpcm)
b) AN là phân giác \(\widehat{CAt}\)
=> \(\widehat{tAN}=\widehat{NAC}\)mà \(\widehat{tAN}=\widehat{NCB}\)(Tứ giác ANCB nội tiếp)
và \(\widehat{NAC}=\widehat{NMC}\)(tứ gics ANCB nội tiếp)
=> \(\widehat{NCB}=\widehat{NMC}\)
Xét tam giác NCD và tam giác NMC có:
\(\widehat{MNC}\)chung
\(\widehat{NCB}=\widehat{NMC}\left(cmt\right)\)
=> Tam giác NCD đồng dạng với tam giác NMC (g.g)
=> \(\widehat{NCM}=\widehat{NDC}\)mà \(\widehat{NDC}=90^o\)và \(\widehat{NCM}=90^o\)
=> NC _|_ CM
Xét tam giác NCM nội tiếp có NC _|_ CM
=> NM là đường kính
=> N,O,M thẳng hàng
c) Tam giác MAN nội tiếp đường kín MN
=> AM _|_ AN => Tam giác KAD vuông tại A
Xét tam giác KAD vuông tại A có AI là đường trung bình
=> AI=ID
=> Tam giác AID cân tại A
=> \(\widehat{IAD}=\widehat{IDA}\)(tính chất tam giác cân) hay \(\widehat{IAB}+\widehat{BAD}=\widehat{IDA}\)
Lại có \(\widehat{DAC}+\widehat{DCA}=\widehat{IDA}\)(tính chất góc ngoài)
\(\Rightarrow\widehat{IAB}+\widehat{BAD}=\widehat{DAC}+\widehat{DCA}\)
mà \(\widehat{BAD}=\widehat{DAC}\)(AD là phân giác) => \(\widehat{IAB}=\widehat{DCA}\)
mà 2 góc này nằm ở vị trí góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung
=> IA là tiếp tuyến của (O)