Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường phân giác CJ của góc ACP cắt PE tại R mà không nói rõ J thuộc đương thẳng nào? đề khó hỉu quá anh(chị) ơi
a) Do P đối xứng B qua AC \(\Rightarrow\) \(\Delta\)APC đối xứng \(\Delta\)ABC qua AC \(\Rightarrow\) CR đối xứng CS qua AC ( vì CS là phân giác góc ACB) \(\Leftrightarrow\) R đối xứng S qua AC \(\Leftrightarrow\) RS\(\perp\)AC mà PB\(\perp\)AC \(\Leftrightarrow\) RS//PB
b) Do K đối xứng P qua CJ \(\Rightarrow\) CK đối xứng CP qua CJ \(\Leftrightarrow\) góc JCK = góc JCP = góc JCA ( vì CJ là phân giác góc ACP) \(\Rightarrow\)tia CK trùng tia CA \(\Rightarrow\) C; A; K thẳng hàng (1)
Cũng Do K đối xứng P qua CJ hay CR nên từ (1) \(\Rightarrow\) góc AKR = góc CKR = góc CPR = góc APR (2) ( vì PR là phân giác góc APC do BS là phân giác góc ABC vì \(\Delta\)APC đối xứng \(\Delta\)ABC qua AC)
Từ (2) \(\Rightarrow\) AKPR nội tiếp \(\Rightarrow\) AKBS nội tiếp ( vì đối xứng)
c) Gọi M là giao điểm của 2 tiếp tuyến tại K,P của (O) ⇒\(\Rightarrow\)M \(\in\) trung trực của KP (3)
Do K đối xứng P qua CJ \(\Leftrightarrow\) CJ là trung trực của KP (4)
Từ (3) và (4) ⇒ 2 tiếp tuyến tại K,P của (O) và CJ đồng quy tại M
ĐS:..................( đến đây thôi vì đề hơi kì xíu)
cách làm thôi nha
GỌi D là gia điểm của AM zới đường tròn (O)
CM các tam giác DBI . DBM cân
=> DI=DM
DO đó OD là đường trung bình của tam giác MIK
=> KM=2OD=2R
Zậy M thuộc đường tròn (K;2R)
tương tự đối zới các điểm N , P