K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì `G` là trọng tâm của tam giác

`@` Theo tính chất của trọng tâm (cách đỉnh `2/3,` cách đáy `1/3`)

`-> GA = 2GM, GA= 2/3 AM`

Xét các đáp án trên `-> D.`

a) Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

 

a: Xét ΔABC có

CM là trung tuyến

BN là trung tuyến

CM cắt BN tại G

Do đó: G là trọng tâm của ΔABC

=>AG là đường trung tuyến

mà P là trung điểm của BC

nên A,G,P thẳng hàng

b: GA=2/3AP

GB=2/3BN

GC=2/3CM

c: GM=1/2GC

GN=1/2GB

GP=1/2GA

17 tháng 9 2023

Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\)độ dài đường trung tuyến đi qua đỉnh ấy nên:

     \(\begin{array}{l}\dfrac{{GA}}{{AM}} = \dfrac{{GB}}{{BN}} = \dfrac{{GC}}{{CP}} = \dfrac{2}{3}\\ \to GA = \dfrac{2}{3}AM;GB = \dfrac{2}{3}BN;GC = \dfrac{2}{3}CP\end{array}\)

Vậy:

     \(GA + GB + GC = \dfrac{2}{3}AM + \dfrac{2}{3}BN + \dfrac{2}{3}CP = \dfrac{2}{3}(AM + BN + CP)\). 

Gọi giao điểm của AG và BC là H

=>AH⊥BC và H là trung điểm của BC

=>BH=a/2

Xét ΔABH vuông tại H có \(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=a^2-\dfrac{1}{4}a^2=\dfrac{3}{4}a^2\)

\(\Leftrightarrow AH=\dfrac{a\sqrt{3}}{4}\)

\(\Leftrightarrow AG=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{4}=\dfrac{a\sqrt{3}}{6}\)

20 tháng 5 2017

sorry , em ko bt làm vì em mới học lớp 5 thui ạ

20 tháng 5 2017

Em cùng ý kiến vs cong chua anh trang