Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi trung điểm BC, CA, AB lần lượt là M, N, P.
Khi đó AM, BN, CP đồng quy tại trọng tâm G.
Ta có: ∆ABC đều suy ra:
+ ∆ABC cân tại A ⇒ BN = CP (theo chứng minh bài 26).
+ ∆ABC cân tại B ⇒ AM = CP (theo chứng minh bài 26).
⇒ AM = BN = CP (1)
Vì G là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến:
Từ (1) , (2) ⇒ GA = GB = GC.
k cho mình nhe
xét hai tam giác DGB=GEC(c.g.c)
=>BD=EC
mà BD=1/2AB
EC=1/2AC
=>AB=AC
tự Cm tiếp nhe
GA=GB=GC, G là trọng tâm tam giác kkhi và chỉ khi đso là tam giác đều.
Đề sai
vì G là trọng tâm của tam giác ABC ta có :
AG=2/3 AN
BG=2/3 BQ (1)
CG=2/3 CM (2)
mà 2 tam giác ACM=ABQ ( g-c-g)
suy ra CM=BQ (cạnh tương ứng) (3)
từ (2) và (3) suy ra BG=CG
>>>>>>.........''tớ chỉ pk lmf tới đây thui''.........<<<<<<<<<<
làm sao để c/m 3 cạnh đó bằng nhau??????????? mk cx ko bít bn giống mk hihi
4536476598769
ta có hình vẽ
Gọi M, N, E là giao điểm của AG, BG, CG với BC, CA, AB.
Vì G là trọng tâm của ∆ABC nên
GA = AM; GB = BN; GC = CE (1)
Vì ∆ABC đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau
=> AM = BN = CE (2)
Từ (1), (2) => GA = GB = GC
Theo định lí nha bạn vì tam giác dều với laị trọng tâm
=> GA = GC = GB
Theo định lí nha bạn vì tam giác dều với laị trọng tâm
=> GA = GC = GB