\(\Delta ABC\)có AB=AC=5cm, BC=8cm. Gọi G là tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

B C A M N G

Bài làm:

Kẻ trung tuyến AM, CN của tam giác ABC

Vì AB = AC = 5cm => Tam giác ABC cân tại A

=> AM đồng thời là đường cao của tam giác ABC

=> AM _|_ BC

Vì M là trung điểm của BC => BM = MC = BC/2 = 4cm

Áp dụng định lý Pytago ta tính được: \(AM^2=AB^2-BM^2=5^2-4^2=9cm\)

=> AM = 3cm

=> GA = 2/3AM = 2cm ; GM = 1cm

Áp dụng Pytago lần nữa ta tính được:

\(GC^2=BG^2=BM^2+GM^2=4^2+1^2=17\)

=> \(GB=GC=\sqrt{17}cm\)

6 tháng 1 2016

vì G là trọng tâm của tam giác ABC ta có :

AG=2/3 AN

BG=2/3 BQ (1)

CG=2/3 CM (2)

 mà 2 tam giác ACM=ABQ ( g-c-g)

suy ra CM=BQ (cạnh tương ứng) (3)

từ (2) và (3) suy ra BG=CG

>>>>>>.........''tớ chỉ pk lmf tới đây thui''.........<<<<<<<<<<

 

6 tháng 1 2016

cho minh xin vai ******* nha minh can gap lam

19 tháng 4 2017

ướng dẫn:

Gọi M, N, E là giao điểm của AG, BG, CG với BC, CA, AB.

Vì G là trọng tâm của ∆ABC nên

GA = 2323AM; GB = 2323BN; GC = 2323CE (1)

Vì ∆ABC đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau

=> AM = BN = CE (2)

Từ (1), (2) => GA = GB = GC

19 tháng 4 2017

Gọi M, N, E là giao điểm của AG, BG, CG với BC, CA, AB.

Vì G là trọng tâm của ∆ABC nên

GA = 2323AM; GB = 2323BN; GC = 2323CE (1)

Vì ∆ABC đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau

=> AM = BN = CE (2)

Từ (1), (2) => GA = GB = GC

27 tháng 4 2022

Gọi `AM` là trung tuyến của `ΔABC`

`=>AM` đồng thời là đường cao 

`=>ΔAMB;ΔAMC⊥M`

`AM` là trung tuyến nên 

`BM=MC=(BC)/2=4(cm)`

Áp dụng định lý py-ta-go ta tính được 

`AM^2=AB^2-BM^2=5^2-4^2=25-16=9(cm)`

`=>AM=3cm`

`G` trọng tâm 

`=>GA=2/3AM=2cm`

`GM=1/3AM=1cm`

Áp dụng định lý py-ta-go lần nữa ta tính đc

`GC^2=BG^2=BM^2+GM^2=4^2+1^2=16+1=17cm`

`=>GB=GC=`\(\sqrt{17cm}\)

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

12 tháng 2 2019

A B C H

Cm: Xét t/giác ABH và t/giác ACH

có góc B = góc C (vì t/giác ABC cân tại A)

 AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> HB = HC (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)

Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:

 AB2 = HB2 + AH2 

=> AH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3

Vậy AH = 3 cm

c) Xem lại đề

9 tháng 11 2019

Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa

https://h.vn/hoi-dap/question/38145.html

bạn xem ở đây nhé

a) Ta có: tam giác ABC cân tại A nên đường cao AH còn là đường trung tuyến 
Suy ra: H là trung điểm của BC 
BH = BC/2 = 3cm 
Áp dụng định lý Py ta go ta có: AH = căn (AB^2 - BH^2) = 4cm 

b)Ta có: G là trọng tâm của tam giác ABC nên G thuộc giao của ba đường trung tuyến của tam giác 
Suy ra: G thuộc đường trung tuyến kẻ từ A 
Mà ở câu a, AH còn là đường trung tuyến nên G thuộc AH 
Vậy: A,G,H thẳng hàng 

c)Tam giác ABC cân tại A, có AH là đường cao nên còn là đường phân giác 
Suy ra: góc BAG = góc CAG 
Xét tam giác ABG và tam giác ACG có: 
AB = AC (tam giác ABC cân tại A) 
góc BAG = góc CAG (cm trên) 
AG chung 
Vậy tam giác ABG = tam giác ACG (c-g-c) 
Suy ra: góc ABG = góc ACG