Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính [G(x) - f(x) ] = ( \(1-x^2+.....+x^{2020}\)) - (\(x^{2020}-x^{2019}+....-x+1\))
= (\(x^{2020}-x^{2019}+....-x+1\)) - (\(x^{2020}-x^{2019}+....-x+1\))
= 0
=> h(x) = [G(x) - f(x) ] * [G(x) + f(x) ]
= 0 * [G(x) + f(x) ]
= 0
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
f(0) = a.02 + b. 0 + c = 2016
<=> c =2016
f (1) = a.12 + b.1 + c =2017
<=> a + b =1 (1)
f ( -1 ) = a (-1)2 + b . (-1) +c =2018
<=> a -b =2 (2)
Từ (1),(2) <=> a = 1,5 ; b = -0,5
=> F(x) = 1,5x2 -0,5 x + 2016
F (2) = 1,5 . 22 -0,5 .2 +2016
= 6 -1 +2016 =2021
Ta có:
\(F\left(0\right)=a.0^2+b.0+c=2016\)
\(\Rightarrow c=2016\)
\(F\left(1\right)=a.1^2+b.1+c=2017\)
\(\Rightarrow a+b=1\)
\(F\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=2018\)
\(\Rightarrow a-b=2\)
Vì a + b =1 và a - b = 2 nên \(\Rightarrow a=\frac{3}{2};b=\frac{-1}{2}\)
Vậy \(F\left(2\right)=\frac{3}{2}.2^2-\left(\frac{-1}{2}\right).2+2016=2023\)
Ta có 2f(x)-x.f(1/x)=x^2
Với x=2 => 2f(2)-2.f(1/2)=4 (1)
Với x=1/2 => 2 . f(1/2)- 1/2 f(2) = (1/2)^2
=> 2 .f(1/2) -1/2f(2)=1/4(2)
lấy (2)+(1) ta được 3/2 f(2)=17/4 => f(2)=17/6
Tính f(1/3) làm tương tự thay x=3 và 1/3
T ic k nha
ôi bạn sửa giúp mình vs ạ
-2010 + 2009 = -1
Từ đó sra f(-1) = 0