Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(S_{10}=\dfrac{u_1\cdot\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\dfrac{1}{1024}\right)}{1-\dfrac{1}{2}}\)
\(=-6\cdot\dfrac{1023}{1024}=\dfrac{-3069}{512}\)
2:
\(\left\{{}\begin{matrix}u1=6\\u2=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\u1\cdot q=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\q=3\end{matrix}\right.\)
\(S_{12}=\dfrac{u_1\left(1-q^{12}\right)}{1-q}=\dfrac{6\cdot\left(1-3^{12}\right)}{1-3}=-3\cdot\left(1-3^{12}\right)\)
\(=3^{13}-3\)
1:
\(S_8=\dfrac{u_1\cdot\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)
\(=-8192\left(1-\left(\dfrac{5}{4}\right)^8\right)\)
2:
\(u2=u1\cdot q\)
=>\(q=\dfrac{3}{-1}=-3\)
\(S_{10}=\dfrac{u1\left(1-q^{10}\right)}{1-q}=\dfrac{-1\cdot\left(1-\left(-3\right)^{10}\right)}{1-\left(-3\right)}\)
\(=\dfrac{-1}{4}\left(1-3^{10}\right)\)
1. Gọi công bội của csn đó là $q$ thì:
$u_6=q^4u_2$
$\Leftrightarrow 32=q^4.2\Leftrightarrow q^4=16$
$\Leftrightarrow q=\pm 2$
2.
$u_{2019}=q^{2018}u_1=2.3^{2018}$
a) \(\left| q \right| = \left| {\frac{1}{2}} \right| < 1\)
b) \(\begin{array}{l}{S_n} = {u_1} + {u_2} + ... + {u_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 1.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2 - 2.{\left( {\frac{1}{2}} \right)^n}\\ \Rightarrow \lim {S_n} = \lim \left[ {2 - 2.{{\left( {\frac{1}{2}} \right)}^n}} \right] = \lim 2 - 2\lim {\left( {\frac{1}{2}} \right)^n} = 2\end{array}\)
1) \(\left(u_n\right):\left\{{}\begin{matrix}u_1=-7\\q=2\end{matrix}\right.\)
\(u_5=-7.q^4=-7.16=-112\)
\(u_m=u_1.q^{m-1}\)
\(\Leftrightarrow-7.2^{m-1}=-3584\)
\(\Leftrightarrow2^{m-1}=512=2^9\)
\(\Leftrightarrow m-1=9\)
\(\Leftrightarrow m=10\)
Vậy số \(-3584\) là số thứ \(10\) của cấp số nhân
\(\left(u_n\right):\left\{{}\begin{matrix}u_1=-3\\q=-2\end{matrix}\right.\)
\(u_{10}=-u_1.q^9=-3.\left(-2\right)^9=1536\)
\(u_m=u_1.q^{m-1}\)
\(\Leftrightarrow-3.\left(-2\right)^{m-1}=-3072\)
\(\Leftrightarrow\left(-2\right)^{m-1}=1024=\left(-2\right)^{10}\)
\(\Leftrightarrow m-1=10\)
\(\Leftrightarrow m=11\)
Vậy số \(-3072\) là số thứ \(11\) của cấp số nhân.
Câu 1:
\(S_8=u_1+u_2+u_3+...+u_8\)
\(=\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)
\(=\dfrac{325089}{8}\)
2: \(S_{10}=u_1+u_2+...+u_9+u_{10}\)
=>\(S_{10}=\dfrac{u_1\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\left(\dfrac{1}{2}\right)^{10}\right)}{1-\dfrac{1}{2}}\)
\(=-6\cdot\left(1-\dfrac{1}{2^{10}}\right)=-6+\dfrac{6}{2^{10}}=-\dfrac{3069}{512}\)
\(Bài.1:\\ u_7=u_1+6d\\ \Leftrightarrow-10=2+6d\\ \Rightarrow6d=-10-2=-12\\ Vậy:d=\dfrac{-12}{6}=-2\\ Bài.2:S_{10}=10.u_1+\dfrac{10.\left(10-1\right)}{2}.d=10.1+\dfrac{10.9}{2}.2=100\\ Bài.3:S_{2019}=2019.u_1+\dfrac{2019.\left(2019-1\right)}{2}.d\\ =2019.3+\dfrac{2019.2018}{2}.2=2019.2021=4080399\)
Bài 4:
\(d=u_2=u_1=5-2=3\)
Bài 5:
\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow2018=2+\left(n-1\right).9\\ \Leftrightarrow2+9n-9=2018\\ \Leftrightarrow9n=2018-2+9\\ \Leftrightarrow9n=2025\\ \Leftrightarrow n=\dfrac{2025}{9}=225\)
Vậy: 2018 là số hạng thứ 225 của dãy
Bài 6:
Đề chưa có yêu cầu
Đáp án đúng là: C
Số hạng tổng quát của cấp số nhân là: \({u_n} = \left( { - 1} \right).{\left( { - \frac{1}{{10}}} \right)^{n - 1}}\).
Xét \({u_n} = \left( { - 1} \right).{\left( { - \frac{1}{{10}}} \right)^{n - 1}} = \frac{1}{{{{10}^{2\,017}}}}\)
\( \Leftrightarrow {\left( { - \frac{1}{{10}}} \right)^{n - 1}} = {\left( { - \frac{1}{{10}}} \right)^{2017}}\)
⇔ n – 1 = 2017
⇔ n = 2018.