K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

\(\frac{bf-ce}{a}=\frac{cd-àf}{b}=\frac{ae-bd}{c}=\frac{abf-ace}{a^2}=\frac{bcd-abf}{b^2}=\frac{ace-bcd}{c^2}\)

\(=\frac{abf-ace+bcd-abf+ace-bcd}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\frac{bf-ce}{a}=\frac{cd-af}{b}=\frac{ae-bd}{c}=0\)

\(\Rightarrow bf-ce=0\Rightarrow bf=ce\Rightarrow\frac{b}{e}=\frac{c}{f}\left(1\right)\)

    \(cd-af=0\Rightarrow cd=af\Rightarrow\frac{c}{f}=\frac{a}{d}\left(2\right)\)

    \(ae-bd=0\Rightarrow ae=bd\Rightarrow\frac{a}{d}=\frac{b}{e}\left(3\right)\)

từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a}{d}=\frac{b}{e}=\frac{c}{f}\)

3 tháng 4 2017

d= d* 1

= d* (af- be)

= daf- dbe

= daf- bcf+ bcf- dbe 

= f (ad- bc)+b (cf- de)

Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1

=> f(ad- be)+ b(cf- de) >= f + b

<=> d >= b+f (đpcm)

22 tháng 3 2017

bó tay . com

8 tháng 3 2020

Ta có : \(\frac{a}{b}=\frac{14}{22}\Rightarrow\frac{a}{14}=\frac{b}{22}=\frac{a+b}{14+22}=\frac{M}{36}\)

\(\frac{c}{d}=\frac{11}{13}\Rightarrow\frac{c}{11}=\frac{d}{13}=\frac{c+d}{11+13}=\frac{M}{24}\)

\(\frac{e}{f}=\frac{13}{17}\Rightarrow\frac{e}{13}=\frac{f}{17}=\frac{e+f}{13+17}=\frac{M}{30}\)

Nhận thấy M chia hết cho 36,24,30 => \(M⋮36,M⋮24,M⋮30\)

=> \(M\in BC\left(36,24,30\right)\)

Ta có : 36 = 22 . 32

            24 = 23 . 3

            30 = 2.3.5

=> \(BCNN\left(36,24,30\right)=2^3\cdot3^2\cdot5=360\)

=> \(BC\left(36,24,30\right)=B\left(360\right)=\left\{0;360;720;1080\right\}\)

Vậy số tự nhiên của M là 1080

AH
Akai Haruma
Giáo viên
25 tháng 11 2020

Lời giải:

Với $a,b,c,d,e,f\in\mathbb{Z}^+$ ta có:

$\frac{a}{b}>\frac{c}{d}\Rightarrow ad>bc\Leftrightarrow ad-bc>0$

Mà $ad,bc$ đều nguyên nên từ đây suy ra $ad-bc\geq 1(*)$

Tương tự:

$\frac{c}{d}>\frac{e}{f}\Rightarrow cf-ed\geq 1(**)$

Từ $(*); (**)$ suy ra:

$d=d(af-be)=daf-dbe=(daf-bcf)+(bcf-dbe)$

$=f(ad-bc)+b(cf-ed)\geq f.1+b.1$

Hay $d\geq b+f$ (đpcm)

25 tháng 11 2020

Em cảm ơn chị !

6 tháng 11 2017

https://olm.vn/hoi-dap/question/152285.html

18 tháng 7 2017

- viết lại cái đề

* Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)

\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)

từ (1),(2),(3),(4) ta có:

a=b,b=c,c=d,d=a

=> a=b=c=d

18 tháng 6 2017

Ta có: a < b => 2a < a + b       (1)

          c < d => 2c < c + d     (2)

          e < f => 2e < e + f      (3)

Cộng ba vế (1),(2),(3) lại ta được:

2a + 2c + 2e < a + b + c + d + e + f

=> 2(a + c + e)  < a + b + c + d + e + f

=> \(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\) (đpcm)